
Mollification

Anne
VANHEMS

Setting

Mollification

Convergence
analysis

Simulations

Control and Inverse Problems Conference

A mollifier approach to nonparametric
instrumental regression

Anne VANHEMS

co-written with
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Y = h(Z)+ ε

• Y,Z,ε : Ω→R
• h : R→R is the unknown regression function

Problem: identify h under the assumption that Z and ε are linked:
E(ε|Z) 6= 0. A standard strategy: introduce an instrumental
variable W : Ω→Rp, that is linked to Z and not to ε .

Y = h(Z)+ ε, E(ε|W) = 0

E(Y|W) = E(h(Z)|W)
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Assumption 1. The laws PZ,PW ,PY are absolutely continuous
with respect to the Lebesgue measure λ .

Then, the equation E(Y|W) = E(h(Z)|W) reduces to the
functional integral equation∫

fYW(y,w)ydy =
∫

fZW(z,w)h(z)dz, w ∈ {x|fW(x) 6= 0}.

Assumption 2. The kernel fZW is λ ⊗λ -square integrable.

Then, the above equation can be written as g = Th, in which T is a
Hilbert-Schmidt operator. Notice that for this equation to have a
solution, it is necessary that g ∈ L2(R).

Assumption 3. The function g(w) =
∫

fYW(y,w)ydy belongs
to L2(R).
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Remark
The last assumption is satisfied in particular if E[Y2]< ∞ and fW is
bounded.

Remark
In practice, g is estimated from observed sample, and the
constraint that g ∈ L2(R) may be incorporated in the estimation
process.

Remark
Note also that the operator T is unknown and it also needs to be
estimated from observed sample:

T : h→
∫

fZW(z,w)h(z)dz.
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Mollifiers in approximation theory

Theorem
Let ϕ ∈ L1(Rn) be such that

∫
ϕ(x)dx = 1. For every β > 0, let

ϕβ (x) :=
1

β n ϕ

(
x
β

)
Let p ∈ [1,∞). Then, for every h ∈ Lp(Rn),

‖ϕβ ∗h−h‖p −→ 0 as β ↓ 0

Remark
The family of operators (Cβ ) given by Cβ h = ϕβ ∗h is referred to
as an approximation of unity.
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Mollifiers for inverse problems
Approximate inverses and Variational mollification

• A. K. LOUIS & P. MAASS, A mollifier method for linear
operator equations of the first kind, Inverse Problems, 1990.

• T. SCHUSTER, The method of approximate inverse: theory
and applications, Vol. 1906, Berlin: Springer, 2007.

• N. ALIBAUD, P. MARÉCHAL and Y. SAESOR, A variational
approach to the inversion of truncated Fourier operators,
Inverse Problems, 2009.

• X. BONNEFOND and P. MARÉCHAL, A variational
approach to the inversion of some compact operators, Pacific
Journal of Optimization, 2009.
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Overview of approximate inverses
A function ψβ : Rn×Rn→R is a mollifier if

(i) for every β > 0 and y ∈Rn, ψβ (·,y) ∈ L1(Rn)∩L2(Rn), and∫
Rn

ψβ (x,y)dy = 1

(ii) for every h ∈ L2(Rn), the function hβ defined by

hβ (y) = 〈h,ψβ (·,y)〉=
∫
Rn

h(x)ψβ (x,y)dx

converges to h in L2(Rn) as β ↓ 0

Assume the existence of a family of functions
(
vβ (·,y)

)
such that

∀β > 0, ∀y ∈Rn, T∗vβ (·,y) = ψβ (·,y)

Then hβ is given by

hβ (y) = 〈h,T∗vβ (·,y)〉= 〈Th,vβ (·,y)〉= 〈g,vβ (·,y)〉
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Overview of approximate inverses

We may use the minimum norm least square solution to

T∗vβ (·,y) = ψβ (·,y)

In this context, the family of mappings

T̃β : L2(Rn) −→ L2(Rn)

g 7−→ 〈g,vβ (·,y)〉

is called an approximate inverse of T
If ψβ (x,y) = ϕβ (y− x), the function hβ is then a convolution of h:

hβ (y) =
∫
Rn

h(x)ψβ (x,y)dx =
∫
Rn

h(x)ϕβ (y− x)dx = (ϕβ ∗h)(y)
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Mollification in variational form

T h = g

• T : L2(V)→ L2(Rp) is bounded linear and injective. where

L2(V) =
{

h ∈ L2(R)
∣∣ supph⊂ V

}
, V bounded.

• inf
{
‖T h‖

∣∣ h ∈ (kerT)⊥, ‖h‖= 1
}
= 0

Principle: Due to the ill-posedness of the problem, give up
recovering the true object h† but instead try to recover a smooth

version of h†, namely

Cβ h† = ϕβ ∗h†

.



Mollification

Anne
VANHEMS

Setting

Mollification

Convergence
analysis

Simulations

Mollification in variational form

T h = g

• T : L2(V)→ L2(Rp) is bounded linear and injective. where

L2(V) =
{

h ∈ L2(R)
∣∣ supph⊂ V

}
, V bounded.

• inf
{
‖T h‖

∣∣ h ∈ (kerT)⊥, ‖h‖= 1
}
= 0

Principle: Due to the ill-posedness of the problem, give up
recovering the true object h† but instead try to recover a smooth

version of h†, namely

Cβ h† = ϕβ ∗h†

.



Mollification

Anne
VANHEMS

Setting

Mollification

Convergence
analysis

Simulations

Mollification in variational form

T h = g

• T : L2(V)→ L2(Rp) is bounded linear and injective. where

L2(V) =
{

h ∈ L2(R)
∣∣ supph⊂ V

}
, V bounded.

• inf
{
‖T h‖

∣∣ h ∈ (kerT)⊥, ‖h‖= 1
}
= 0

Principle: Due to the ill-posedness of the problem, give up
recovering the true object h† but instead try to recover a smooth

version of h†, namely

Cβ h† = ϕβ ∗h†

.



Mollification

Anne
VANHEMS

Setting

Mollification

Convergence
analysis

Simulations

Heuristics

• h◦ = Cβ h† +(I−Cβ )h†

• Undesired component: (I−Cβ )h†

• Penalty term: ‖(I−Cβ )h‖2

• A natural choice for the fit term is ‖g−Th‖2
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Regularization scheme

• Define the target object to be Cβ h†

• Define the reconstructed object hβ as the solution of

Min
h∈L2(V)

1
2

∥∥g−Th
∥∥

L2(Rp)
+

1
2

∥∥(I−Cβ )h
∥∥

L2(R)

hβ :=
(
T∗T +(I−Cβ )

∗(I−Cβ )
)−1T∗g

• Regard (Cβ )β∈(0,1] as an approximation of unity, and
consider the asymptotic behavior as β ↓ 0
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Main issues

• Wellposedness for fixed β > 0

• Asymptotic behavior as β ↓ 0
• Computational aspects
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Theorem (Consistency)
Assume that h† ∈ L2(V)∩Hs(R), that g = Th† and let

hβ :=
(
T∗T +(I−Cβ )

∗(I−Cβ )
)−1T∗g.

Then
(
hβ

)
β∈(0,1] is bounded and weakly compact in L2(V).

Moreover, for every sequence (βn)n converging to 0,
• hβn ⇀ h†;
• limR→∞ supn∈N

∫
‖x‖>R |hβn(x)|2 dx = 0;

• supn∈N ‖Tδ hβn−hβn‖L2(R)→ 0 as δ → 0.

Consequently, by the Fréchet-Kolmogorov theorem,

hβ → h† as β → 0.
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Assume that h† ∈ L2(V)∩Hs(R), that g = Th† and let

hβ :=
(
T∗T +(I−Cβ )

∗(I−Cβ )
)−1T∗g.

Then
(
hβ

)
β∈(0,1] is bounded and weakly compact in L2(V).

Moreover, for every sequence (βn)n converging to 0,
• hβn ⇀ h†;
• limR→∞ supn∈N

∫
‖x‖>R |hβn(x)|2 dx = 0;

• supn∈N ‖Tδ hβn−hβn‖L2(R)→ 0 as δ → 0.

Consequently, by the Fréchet-Kolmogorov theorem,

hβ → h† as β → 0.



Mollification

Anne
VANHEMS

Setting

Mollification

Convergence
analysis

Simulations

Theorem (Consistency under approximate setting)
With the notation and assumptions of the previous theorem, let Tn

and gn be approximations of T and g:

Tn→ T and gn→ g as n→ ∞.

Let

hβ ,n :=
(
T∗n Tn +(I−Cβ )

∗(I−Cβ )
)−1T∗n gn

h†
β ,n :=

(
T∗n Tn +(I−Cβ )

∗(I−Cβ )
)−1T∗n Tnh†.

Then

(i) ‖h†−h†
β ,n‖L2 → 0 as β ↓ 0;

(ii) ‖h†
β ,n−hβ ,n‖L2 ≤ C̄β−2s

(
‖(Tn−T)h†‖L2 +‖g−gn‖L2

)
.
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Corollary
In the above setting, there exists a parameter choice rule β (n)→ 0
as n→ ∞ such that

‖h†−hβ ,n‖L2 → 0 as n→ ∞.

For example, if ‖(T−Tn)h†‖= ‖g−gn‖= O(1/n), then
β (n) = n−τ/(2s) with τ < 1 is a converging a priori selection rule.
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In the simulations, we compare 5 methods:

• Mollification: hβ ,n =
(
T∗n Tn +(I−Cβ )

∗(I−Cβ )
)−1T∗n gn;

• Tikhonov: hα,n =
(
T∗n Tn +αI

)−1T∗n gn;

• Generalized Tikhonov: hα,n =
(
T∗n Tn +αD∗2D2

)−1T∗n gn;
• Landweber: hk+1,n = T∗n (gn−µTnhk,n)+hk,n, µ < 1,

k = 1,2, ...;
• Spectral cut-off: hk,n = ∑

k
j=1

1
σj
〈vj,gn〉uj, k = 1,2, ...,N.
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For each regularization method, we computed the reconstruction
error ∥∥h†−hreg.par,n

∥∥

• Mollification: ‖h†−hβ ,n‖
• Tikhonov and Generalized Tikhonov: ‖h†−hα,n‖
• Landweber: ‖h†−hk,n‖
• Spectral Cutoff: ‖h†−hk,n‖
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We consider a sample size n = 3000 and we generate the data as
follows:

• we generate independently (W,ε) from a uniform
distribution U (−0.5,0.5)

• We generate Z as:
Z = m(W)+0.5ε, m(W) = 0.25+0.5W
• Y is defined as Y = hl(Z)+ ε, l = 1,2

• Smooth case: h1 = f (0.4,0.1)+ f (0.65,0.075) truncated to
the interval [0,1], where the function f (µ,σ) is the p.d.f of
the gaussian of mean µ and standard deviation σ .

• Nonsmooth case: h2(t) = exp(−|x−0.5|)
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• The mollifier ϕβ is the centered gaussian kernel with
standard deviation β ;

• The discretization of the problem is done by projection onto
100 finite dimensional basis of gate functions on [0,1]. The
finite dimensional equation is given by

Mji = E[φi(Z)ψj(W)], and

r̄j = E[Yψj(W)], i, j = 1, ...,100.
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The data
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Figure: Error versus regularization parameter
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Best approximation (smooth case)
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Figure: Comparison best approximation of each regularization method
for the function ϕ1 in case of projection onto gate functions.
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Best approximation (nonsmooth
case)
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Figure: Comparison best approximation of each regularization method
for the function ϕ2 in case of projection onto gate functions.
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A Monte-Carlo experiment

Monte-Carlo performances of the 5 methods with M = 1000
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Figure: Results of Monte Carlo simulation for the functions ϕ1 and ϕ2.
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Thank you for your attention!
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N. ALIBAUD, P. MARÉCHAL and Y. SAESOR, A variational
approach to the inversion of truncated Fourier operators, Inverse
Problems, 2009
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