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1. Introduction

1.1. Small volume asymptotics
Consider the perturbation of a reference medium with smooth, positive conductivity,
by small inhomogeneities

Reference configuration : Perturbed configuration :

conductivity γ(x) conductivity γε(x) = γ(x) + (k − γ(x))1ωε (x)
div(γ∇u0) = 0 in Ω

γ∇u0 · n = g on ∂Ω∫
∂Ω

u0 = 0


div(γε∇uε) = 0 in Ω

γε∇uε · n = g on ∂Ω∫
∂Ω

uε = 0



There has been a lot of work on deriving asymptotic expansions of uε − u0 or other
related quantities

Typically, in the case of a single inclusion, say ωε = x0 + εω, one may introduce a
Neumann function for the reference PDE −divy(γ∇yN(x, y)) = δx(y) in Ω

γ∇yN(x, y) · n = 1/|∂Ω| on ∂Ω

which, multiplied by the difference uε − u0, yields a representation formula at a point
x ∈ Ω, far from x0

(uε − u0)(x) =

∫
ωε

(γ − k)∇N(x, y)∇uε(y) dy



Introducing the ansatz

uε(y) = u0(y) + εv
(y − x0

ε

)
+ rε(y)

one obtains an expansion of uε − u0 in terms of the volume of ωε

uε(x)− u0(x) = |ωε|M∇u0(x0) · ∇N(x, x0) + o(|ωε|)

The corrector

v(y) =
d∑
j=1

∂xju0(x0)φj(y)

is a linear combination of the solutions in the whole Rd to −div [γ1(y)∇(φj(y) + yj)] = 0 in Rn

φj(y) → 0 as |y| → ∞

and the polarization tensor M is deduced from the correctors via

Mi,j = (γ − k)

∫
ω
δij −

∂φi

∂yj
dy



M contains information on the coefficient contrast and on the geometry of the
inhomogeneity

Such expansions have been used successfully to design robust algorithms for the
detection of small inhomogeneities from boundary measurements [Brühl Hanke
Vogelius, Ammari et al,...]

They also have been used for giving estimates on the volume of the inhomogeneities



References + extensions :

- Conduction [Cedio-Fengya Moskow Vogelius 98]

- Derivation of higher order terms in the expansion for piecewise constant
coefficients, using integral equations [Ammari Kang 04]

- Elasticity [Ammari Alves 01]

- Helmholtz equation [Vogelius Volkov 00]

- The Maxwell equations [Ammari Vogelius Volkov 01]

- Asymptotics for eigenvalues [Ammari Moskow]

- Cracks [Friedman Vogelius 89]

- Strip-like inclusions [Beretta Francini Vogelius 03]

- Also work by Kozlov, Movchan, Lipton...



1.2. A general representation formula [Capdeboscq-Vogelius 03]

Assume that the medium is perturbed by inhomogeneities contained in a small subset
ωε of Ω such that

- ωε is measurable

- dist(ωε, ∂Ω) > d0 > 0

- limε→0 |ωε| → 0

- The conductivities γ and γε are uniformly bounded and elliptic

Then for a subsequence 1
|ωε|

1ωε (x) ⇀ µ weakly-* in the dual of C0(Ω)

∀ φ ∈ C0(Ω), lim
ε→0

∫
Ω

1

|ωε|
1ωε (x)φ(x) = < µ, φ >

there exists a matrix-valued function M in L2(Ω, dµ) such that

uε(x)− u0(x) = |ωε|
∫

Ω
(γ − k)M∇u0(y) · ∇N(y, x0) dµ(y) + o(|ωε|)



Again, the expansion is obtained using the representation formula∫
Ω
γ0∇(uε − u0) · ∇v =

∫
ωε

(γ0 − γ1)∇uε · ∇v

and one can show that

1

|ωε|
1ωε∇uε dx ⇀ M∇u0 dµ

• When ωε has the form x0 + εω, then dµ = δx0 and M = Mδx0



1.3. Perturbations in the type of BC’s

We now consider the following reference configuration :
−div(γ∇u0) = f in Ω

∂u0
∂n

= 0 on ΓN
u0 = 0 on ΓD

and the perturbations
−div(γ∇uε) = f in Ω

∂uε
∂n

= 0 on ΓN \ ωε
uε = 0 on ΓD ∪ ωε


−div(γ∇uε) = f in Ω

∂uε
∂n

= 0 on ΓN ∪ ωε
uε = 0 on ΓD \ ωε

where ωε is a piece of ΓN (resp. ΓD) in the system on the left (resp. on the right)



Previous work

- Perturbations of Neumann BC’s relate to the narrow escape problem (motion of a
Brownian particle trapped in a domain with reflecting boundary except for narrow
absorbing windows)

[Cheviakov-Ward-Straube 10, Holcman-Shuss 14, Ammari-Kalimeris-Kang-Lee 12,
Lee-Li-Wang 14,...]

- The case of 2 cavities connected by a narrow gate iz analyzed in
[Bendali-Fares-Tizaoui-Tordeux 12]

- There is recent work on optmizing the boundary conditions for wave enhancement in
a cavity with tunable reflecting metasurface
[Ammari-Imeri-Wu 18, Ammari-Bruno-Imeri-Nigam 20]

where the asymptotic expansions are used to compute a topological derivative in order
to nucleate a Neumann part of the boundary

In this latter series of works, perturbed NBC and DBC are addressed for ∆ in 2D



Our interest in this problem stems from structural optimization problems in which one
tries to distribute a certain amount of material in a fixed given domain Ω so as to
minimize a cost functional

A typical example is that of compliance optimization

Given ∂Ω = ΓN ∪ ΓD, g ∈ L2(ΓN ), l ∈ R, find χ ∈ L∞(Ω, {0, 1}) that minimizes

J(χ) =

∫
Ω
Ae(uχ) : e(uχ) + l

∫
Ω
χ

where uχ is the solution in to
div(Ae(u)) = 0 in Ωχ := Ω ∩ {χ = 1}

Ae(u)n = g on ΓN ∩ Ωχ

u = 0 on ΓD ∩ Ωχ

where e(u) := 1/2(∇u+∇uT ) and A denotes the Lamé tensor



[See the review by G. Allaire, C. Dapogny and F. Jouve, Shape and Topology
Optimization, Handbook of Numerival Analysis, vol. 22. pp. 1-132, 2021]



How does this relate to the asymptotics ?

- One may want to further rigidify a structure by fixing it to the external frame on
small subsets of the boundary (e.g. with screws)

- In additive manufacturing, one tries to avoid overhangs by using thin supporting
columns : finding their optimal location may be incorporated in the optimization
process

- However, the practical implementation of the asymptotic expansions that we
derived requires a more explicit characterization in model situations



Main assumptions for the asymptotics

- Ω is smooth, Ω ⊂ R2 or R3

- the conductivity γ is elliptic and smooth

- ωε is a finite number of connected, open Lipschitz subdomains of ∂Ω, the
closures of which do not intersect

- ωε ⊂ ΓN and dist(ωε,ΓD) > dmin > 0 for the perturbation of a Neumann BC
(and the other way around for the perturbation of a Dirichlet BC)

- f is smooth



2. A general representation formula

2.1. How to measure how small ωε is ?

• In the case of the perturbation of a Neumann BC, we set for a set E ⊂ Rd

cap(E) = inf{||v||H1(Rd), v(x) ≥ 1 a.e. in an open neighborhood of E}

= inf{||v||H1(Rd), v(x) = 1 a.e. in an open neighborhood of E}

Assume that Ω ⊂ Rd is a smooth domain, ω a Lipschitz subset of ∂Ω, and
u ∈ H1(Rd) such that

u ≡ 1 on ω (as a function of H1/2(ω))

then cap(ω) ≤ ||u||2
H1(Rd)

In particular, if Dε = {x = (x1, . . . , xd−1, 0) ∈ Rd, |x| < ε} then

cap(Dε) = O(
1

|ln(ε)|
) when d = 2 cap(Dε) = O(ε) when d = 3



• In the case of the perturbation of a Dirichlet BC : let ω ⊂ Rd be a finite collection
of disjoint Lipschitz hypersurfaces and set

e(ω) = max
κ

{∫
Rd
|∇z|2 + z2, z ∈ H1(Rd) \ ω and

{
−∆z + z = 0 in Rd \ ω
∂nz = κ on ω

}
where the max is taken over all functions κ ∈ C∞(Rd) such that κ(x) = ±1, x ∈ ω

When ω has a single connected component, e(ω) is the energy of the unique
z ∈ H1(Rd) \ ω such that{

−∆z + z = 0 in Rd \ ω
∂nz = 1 on ω

(One could call this number the Neumann capacity of ω)



We would rather use a measure of the smallness of ωε that does not require the
resolution of a PDE

This is possible in certain cases :

If ω ⊂ ΓD ⊂ ∂Ω is well separated from ΓN by dmin, then

e(ω) ≤ C D(ω) := C

∫
Ω

1

ρω(x)
dσ(x)

where ρω(x) :=

∫
∂Ω\ω

1

|x− y|d
dσ(y)

where C = C(Ω,ΓD, dmin)



2.2. Perturbation of a Neumann BC

Recall that
−div(γ∇u0) = f in Ω

∂u0
∂n

= 0 on ΓN
u0 = 0 on ΓD


−div(γ∇uε) = f in Ω

∂uε
∂n

= 0 on ΓN \ ωε
uε = 0 on ΓD ∪ ωε

Elliptic regularity theory implies that u0 is smooth in Ω except possibly at the points
where ΓD, ΓN and ωε meet and

||u0||C2 ≤ C ||f ||Hm(Ω)



Key estimates

Let χε ∈ H1(Ω) solve 

−∆χε = 0 in Ω

χε = 1 on ωε

χε = 0 on ΓD

∂nχε = 0 on ΓN \ ωε

Lemma : There exists constants 0 < c < C independent of ωε such that

c cap(ωε)
1/2 ≤ ||χε||H1(Ω) ≤ C cap(ωε)

1/2

||χε||L2(Ω) ≤ C cap(ωε)
3/4



It follows from these estimates, that for any function φ ∈ C1(∂Ω)

(continuously extended into Ω by a function φ̃)∣∣ ∫
∂Ω

χε∂nχεφ dσ(y)
∣∣ =

∣∣ ∫
Ω
∇(χεφ̃) · ∇χε dy

∣∣ ≤ C cap(ωε) ||φ||C1(∂Ω)

Invoking the Banach-Alaoglu Theorem, we may assume that there exists a bounded
linear functional µ on C1(∂Ω) such that (for a subsequence)∫

∂Ω

1

cap(ωε)
χε∂nχεφ dσ(y) → < µ, φ >



Consider the difference rε = uε − u0, solution to

−div(γ∇rε) = 0 in Ω

rε = −u0 on ωε

rε = 0 on ΓD

∂nrε = 0 on ΓN \ ωε

Since u0 is smooth on ωε (as these sets are uniformly embedded in ΓN ) the Lemma
shows that

||rε||H1(Ω) = O(cap(ωε)
1/2) and ||rε||L2(Ω) = O(cap(ωε)

3/4)



Using the Neumann function N , we obtain the representation formula

rε(x) =

∫
Ω

(
− div(γ(y)∇yN(x, y))

)
rε(y) dy

=

∫
Ω
γ(y)∇rε(y) · ∇yN(x, y) dy −

∫
∂Ω

γ(y)∂nyN(x, y) rε(y) dσ(y)

=

∫
∂Ω

γ(y)∂nrε(y)N(x, y) dσ(y) −
∫
∂Ω

γ(y)∂nyN(x, y) rε(y) dσ(y)

rε(x) =

∫
∂Ω

γ(y)∂nrε(y)N(x, y) dσ(y)

Let φ ∈ C1(∂Ω) such that φ = 0 on {y ∈ ∂Ω, dist(y,ΓD) < dmin/3}



We extend φ inside Ω by a function ψ so that

ψ = φ on ∂Ω, and ||ψ||C1(Ω) ≤ C ||φ||C1(∂Ω)

Then we compute (compensated compactness argument [Murat-Tartar,
Capdeboscq-Vogelius])∫

∂Ω
γ∂nrε φ =

∫
ωε

γ∂nrε (χεψ)

=

∫
Ω
γ∇rε · ∇(χεψ)

=

∫
Ω
γχε∇rε · ∇ψ +

∫
Ω
γψ∇rε · ∇χε

=

∫
Ω
∇(γψrε) · ∇χε + T1 −

∫
Ω
rε∇(γψ) · ∇χε

=

∫
∂Ω

(∂nχε)
[
γψrε

]
+ T1 + T2 (and rε = −u0 on ωε)

=

∫
ωε

(∂nχε)
[
γ(−u0χε)φ

]
+ T1 + T2

= −
∫
∂Ω

χε∂nχε
[
γu0φ

]
+ T1 + T2



The terms T1 and T2 can be estimated using the bounds on χε and the regularity of
u0

|T1| ≤ C ||χε||L2(Ω)||rε||H1(Ω)||ψ||C1(Ω)

≤ C cap(ωε)
5/4||f ||Hm(Ω)||φ||C1(∂Ω)

and a similar estimate holds for T2.

Let x ∈ Ω and η a smooth cut-off function on ∂Ω with support in ΓN

We set φ(y) = N(x, y)η(y) to rewrite the representation formula

rε(x) =

∫
∂Ω

γ(y)∂nrε(y)N(x, y) dσ(y)

=

∫
∂Ω

γ(y)∂nrε(y)N(x, y)η(y) dσ(y)

= −
∫
∂Ω

χε∂nχε
[
γu0N(x, y)η

]
dσ(y) + O(cap(ωε)

5/4)

= −cap(ωε) < µ, γu0N(x, ·)η > +o(cap(ωε))



One can check that

< µ, 1 > = lim
ε→0

∫
∂Ω

χε ∂nχε, dσ(y) > 0

and that the support of µ is included in any compact subset of ∂Ω that contains all
the ωε’s, so that µ is in fact a non-trivial Radon measure

Thm

Let uε solve the Perturbed-NBC problem and assume that limε→0 cap(ωε) = 0

There exists a subsequence of the uε’s and a Radon measure µ supported in ∂Ω, such
that for all x ∈ Ω

uε(x) = u0(x)− cap(ωε) < µ, γu0N(x, ·) > + o(cap(ωε))

The first order term represents the field induced by a collection of monopoles
distributed on the limiting location of the vanishing subsets ωε



2.3. Perturbation of a Dirichlet BC

We can analyse this case using the same ideas : what replaces the functions χε here
are the solutions in H1(Ω) to

−∆ζε = 0 in Ω

ζε = 0 on ΓD \ ωε

∂nζε = 1 on ωε

∂nζε = 0 on ΓN

Lemma : There exists constants 0 < c < C independent of ωε such that

c e(ωε)
1/2 ≤ ||ζε||H1(Ω) ≤ C e(ωε)

1/2

||ζε||L2(Ω) ≤ C e(ωε)
3/4



Thm

Let uε solve the Perturbed-DBC problem and assume that limε→0 e(ωε) = 0

There exists a subsequence of the uε’s and a Radon measure µ supported in ∂Ω such
that for all x ∈ Ω

uε(x) = u0(x)− e(ωε) < µ, γ(y)
∂u0(y)

∂n

∂N(x, y)

∂n
> + o(e(ωε))

In this case, the first order term represents the field induced by a collection of dipoles
distributed on the limiting location of the vanishing subsets ωε



4. Explicit examples

It is easy to check that the measures µ are Radon measures, the supports of which are
contained in any compact subset of ∂Ω that contains the ωε’s

We have investigated simple situations, when the ωε’s are surfacic balls, where we
have been able to give an explicit characterization of the corresponding µ’s

Specifically, ωε is the image of a segment (in 2d) or of a flat disc (in 3d) that shrinks
to a point (say 0) as ε→ 0



Thm

Assume that the sets ωε are unifomly contained in the interior of either ΓN or ΓD and
concentrate on the point 0

Assume that x ∈ Ω \
[
(ΓD ∩ ΓN ) ∪ {0}

]
Expansion for the perturbed NBC

uε(x) = u0(x)−
π

|ln(ε)|
γ(0)u0(0)N(x, 0) + o(

1

|ln(ε)|
) when d = 2

uε(x) = u0(x)− 4εγ(0)u(0)N(x, 0) + o(ε) when d = 3

Expansion for the perturbed DBC

uε(x) = u0(x) + adε
dγ(0)

∂u0(0)

∂n

∂N(x, y)

∂ny
+ o(εd)

with d = 2, 3, a2 = π/2 and a3 = 1/3



A few words about the proof

Pull back ωε to a locally flat interface Dε with T : O → Ω

Set vε = uε ◦ T, v0 = u0 ◦ T

The PDE −div(γ∇uε) = f transforms into −div(A∇vε) = f ◦ T

with a non-homogeneous, possibly anisotropic conductivity

A = |det(∇T )|(γ ◦ T )∇T−1∇T−T



Given a symmetric matrix Ã set M̃ = Ã−1/2 and

LÃ(x, y) = −
1

2π
|det(M̃)|

(
ln |M̃x− M̃y|+ ln |M̃x− M̃y + 2y2|

)
Then, in the lower half-space H = {y2 < 0}, LÃ solves −div(Ã∇LÃ(x, y) = δx(y) in H

Ã∇LÃ(x, y) · n(y) = 0 on ∂H



For x ∈ O, away from Dε we choose Ã = A(x) and we write a representation formula
for sε = vε − v0

sε(x) = −
∫
O

div(A(x)
(
∇yLA(x)(x, y)

)
sε(y)

= −
∫
∂O\U

A(x)∇yLA(x) · nsε +

∫
O

(
A(x)−A(y)

)
∇yLA(x) · ∇ysε

+

∫
ΓD

(A∇sε · n)(y)LA(x) dσ(y) +

∫
Dε

(A∇sε · n)(y)LA(x) dσ(y)

Letting x→ Dε and rescaling, we obtain an integral equation for

ϕε(z) = (A∇sε · n)(εz), z ∈ D1

Tεϕε :=

∫
D1

ϕε(z)LA(εx)(εx, εz) dσ(z) = −u0(0) + ηε

where the kernel is explicit



We show that ηε → 0 in H1/2(Dε)

and that

Tεϕ ∼
1

πγ(0)

(
| ln(ε)|+ cste

) ∫
D1

ϕdσ(y) +
2

γ(0)
S1ϕ

where the operator S1 is invertible on H−1/2 → H1/2

S1ϕ(x) =
1

π

∫
D1

ln |x− z|ϕ(z) dσ(z)



This requires estimating the integral operator with kernel

Kε(x, z) =
1

πγ(0)
ln |z| −

1

π
√
|det(A(εx)|

ln
∣∣√γ(0)M(εx)z

∣∣
which is a homogeneous of class (-1)

The associated integral operator maps H−1/2(D1) into H1/2(D1)

Moreover

lim
ε→0

sup
|α|,|β|≤k

sup
x∈R2

sup
|z|=1

∣∣∣ ∂α
∂xα

∂β

∂zβ
Kε(x, z)

∣∣∣ = 0

which shows that this operator tends to 0 in the operator norm



We rewrite the integral equation as

−u0(0) + ηε = Tεϕε(x)

↓
0

=

∫
D1

ϕε(z)LA(εx)(εx, εz) dσ(z)

=

∫
D1

ϕε(z)
1

πγ(0)
ln |εx− εz| dσ(z) + Rεϕε(x)

=
1

πγ(0)
(| ln ε|+ cste)

∫
D1

ϕε +
1

πγ(0)

∫
D1

ϕε ln |x− z| dσ(z) +Rεϕε

↓
invertible

↓
0

So we get ∫
D1

ϕε =
−πγ(0)u0(0)

| ln ε|
+ o(

1

| ln ε|
)



Finally, we write another representation formula for uε, using the fundamental solution
of the reference configuration

uε(x) = u0(x) +

∫
ωε

γ(y)
∂

∂n
(uε − u0)(y)N(x, y) dσy

which after pull-back and rescaling yields

uε(x) = u0(x) +

∫
D1

ϕε(z)N(x, Tεz) dσz

= u0(x) +

(∫
D1

ϕε(z) dσz

)
N(x, 0) + O(ε)

= u0(x)−
π

|ln(ε)|
γ(0)u0(0)N(x, 0) + o(

1

|ln(ε)|
)



• [Cheviakov, Ward, Li,...] used matched asymptotics for the perturbed NBC

• A similar integral representation was used in the work of [Ammari et al]

• See also [Bonnet] for the case of the Lamé operator



Conclusion

- We derived a general representation formula for the asymptotics of the solution
to an elliptic PDE when the type of BC is changed over a small subset ωε of the
boundary

- We obtained an explicit characterization of the first order term when ωε is a
surfacic ball

- These asymptotics generalize those derived for small internal inhomogeneities,
and the general representation formula shows a similar structure

- Perspectives : higher order terms for the perturbed Dirichlet BC,
[Ammari-Kalameris-Kang-Lee], study of effective boundary behaviors

- Application to shape optimization: we want to use these asymptotic to compute
a topological derivative in order to optimize also the places where a structure
would be attached


