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Figure 1: Plato’s Allegory of the Cave
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Figure 2: X-Ray



Medical Imaging

Figure 3: X-Ray
Figure 4: MRI



What is Photo-Acoustic Tomography (PAT)\(TAT)?
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1. Sending an optical wave into the medium

2. Heating of the absorbers due to the absorption of electromagnetic energy

3. Thermal expansion of the absorbers
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4. Generation of acoustic waves
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6. Detection of the wave at the boundary and image formation
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Di�erence between PAT and TAT

PAT

I High frequency radiation
I Higher energy absorption
I Low penetration due to sca�ering
I Partial boundary observations
I Resolution in case of variable acoustic

speed
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I Low frequency radiation
I Large di�erence in conductivity
I Higher penetration of light
I Total boundary observation
I Resolution only in case of constant

acoustic speed
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Inverse PAT problem

In PAT a high frequency radiation is delivered into the biological tissue to be imaged. The
transfer of laser pulse in the biological tissue is described by the following di�usion
equation.

−∇.(D(x)∇u) + µa(x)u = 0 in Ω

u = f on Γ,

Stress Confinement condition

The complete energy is deposited almost instantaneously compared to travel time
of acoustic waves.



Inverse PAT problem

Under the stress confinement condition, the acoustic pressure is assumed to be generated
initially, and thus it is known to satisfy the following wave equation

1

c2
s(x)

ptt(x, t)−∆p(x, t) = 0 in Ω×]0, T [

p(x, 0) = p0(x) := β(x)µa(x)u(x) in Ω

pt(x, 0) = 0 in Ω

p(x, t) = 0 on Γ×]0, T [,

(1)

equipped with the partial boundary observation

∂p

∂ν
(x, t) := h(x, t) on Σ0

T := Γ0×]0, T [,

where Γ0 ⊂ Γ satisfies the following geometric condition for some x0 in R3

Γ0 = Γ(x0) = {x ∈ Γ such that (x− x0).ν > 0}



Inverse PAT problem

Inverse problem

Reconstruction of the absorption coe�icient µa from the measurement of ∂p∂ν on Σ0
T .



Inverse PAT problem

Approaches used in literature:

The main approach used in literature for solving the PAT problem is the quantitative
photo-acoustic tomography approach (qPAT) which divides the inverse problem into two
main problems

1. Acoustic inversion: Reconstruction of the initial pressure p0(x) from the boundary
measurements.

2. Optical inversion: Reconstruction of the absorption coe�icient µa from the
previously calculated initial pressure using the relation p0(x) = β(x)µa(x)u(x) and
the di�usion equation satisfied by u.



Inverse PAT problem

Drawbacks of the qPAT approach:

The qPAT involves many di�iculties leading to the illposedness of the inverse map. These
di�iculties can be summarized as follows:

I Non-absorbing background medium
I Limited boundary observations
I Spatially varying Grüneisen coe�icient
I Non-linear dependence of the light fluence u on the absorption coe�icient



Inverse PAT problem

We assume that the absorption coe�icient µa is defined piece-wisely,

µa(x) =


µ0(x) in Ω \

m⋃
j=1

ωj

µj(x) in ωj ,

where µj are functions belonging to the spaces L∞(ωj), and ωj ⊂ Ω are small domains
representing the absorbers (tumors) and defined as follows

ωj = Sj + εBj for j = 1, . . . ,m,

µ0 = O(εκ), κ > 4.



Inverse PAT problem

Algebraic Algorithm

This method was first developed by El Badia and H.Doung in 2000. It consists
in developing a system of algebraic relations based on the idea of the so called
Reciprocity gap functional and Green’s formula. The idea behind this algorithm is
the projection of the problem onto well chosen test functions, which allows the
reconstruction of the unknowns from a single boundary data.

It is based on the construction of a Hankel matrixH from the boundary observations,
then the number of absorbers can be reconstructed as the rank of this matrix, and
the locations of these sources are the eigenvalues of a companion matrix that is
also built using the boundary measurements.



Inverse PAT problem

I Case of constant acoustic speed

1. Data completion
I Reconstruction of the initial pressure p0(x) from the boundary observations by means

of exact controllability

Γ0 = Γ(x0) = {x ∈ Γ such that (x− x0).ν > 0},

T >
2R(x0)

cs
,

where
R(x0) = sup

x∈Ω̄

|x− x0|.

I Data completion of ∂p∂ν can be obtained by solving (1).



Inverse PAT problem
I Case of constant acoustic speed

2. Resolution of the inverse problem using the algebraic algorithm. Take v to be a
solution of

1

c2
s

vtt −∆v = 0.

Multiplying (1) by v, and using Green’s formula we get

R(h, v) =

N∑
j=1

∫
wj

1

c2
s

β(x)µj(x)u(x)vt(x, 0)dx +O(εκ),

where

R(h, v) :=

∫
Ω

1

c2
s

(p(x, T )vt(x, T )− pt(x, T )v(x, T ))dx +

∫
ΣT

v(ξ, t)h(ξ, t)dξdt.

v(., T ) = vt(., T ) = 0

vt(., 0) 6= 0.
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Inverse PAT problem

I Case of constant acoustic speed

We define for n ∈ N
van(x, y, z, t) = ρ(z, t)(x+ iy)n,

where ρ is a solution of the one dimensional wave equation
1

c2
s

ρtt(z, t)− ρzz(z, t) = 0 in (γ1, γ2)× (0, T )

ρ(z, 0) = 0 ρt(z, 0) = 1 in (γ1, γ2)

ρ(γ1, t) = 0 ρ(γ2, t) = w(t) for t ∈ (0, T ).

Taking T > 2diam (Ω)
cs

, then by exact controllability, we can find w ∈ H1
0 (0, T ), such that

ρ satisfies
ρ(., T ) = ρt(., T ) = 0.



Inverse PAT problem

I Case of constant acoustic speed

Substituting van in the previous formula we get

R(f, van) =

N∑
j=1

n∑
k=0

νk,aj

(
n

k

)
(P aj )n−k +O(εκ), for all n ∈ N

where

νk,aj = ε3+k

∫
Bj

1

c2
s

λj(Sj + ετ)(τ1 + iτ2)kdτ.

λj(x) = β(x)µj(x)u(x).



Inverse PAT problem

I Case of constant acoustic speed

Obtained Results:

I Reconstruction of the number of absorbers N using a Hankel matrix Hr ;
I Reconstruction of the projections P rj of the centers using a companion matrix;

I Reconstruction of the coe�icients νk,rj as a solution of a linear system via the Hankel
matrix Hr ;

I Reconstruction of the final locations Sj by solving a similar linear system and using
the coe�icients νk,rj ;

I Hölder stability estimates for the reconstruction of the centers Sj ;



Inverse PAT problem

I Case of variable acoustic speed

Test functions of the form ρ(z, t)(x+ iy)n are not applicable in this case, for this purpose,
we opt to reconstruct the final pressure p(., T ).

1. Data completion
I Reconstruction of the initial pressure p0(x) from the boundary observations by means

of exact controllability for variable speed

s1 = ‖∇cs‖∞ <
cmin

2R(x0)
,

T >
2s1R(x0)

cmin − 2s1R(x0)
.

I Data completion of ∂p∂ν and p(., T ) can be obtained by solving (1).

2. Resolution of the inverse problem using the algebraic algorithm and the test
functions

van(x, y, z, t) = (t− T )(x+ iy)n.



Inverse PAT problem

I Case of variable acoustic speed

Following the algebraic algorithm we can finally obtain
I The number of the absorbers
I The locations of the centers
I Hölder stability estimate for the reconstruction of the centers.



Further Work

Inverse moving point source problem for the wave equation

Hanin AL Jebawy- Faouzi Triki- Abdellatif EL Badia



Further Work


1

c2
φtt −∆φ = λδ(x− b(t)) in R3 × (0, T )

φ(x, 0) = φt(x, 0) = 0 in R3,
(2)

where T > 0 is a fixed time, c > 0 is the speed of the wave, λ > 0 is the intensity, and
b ∈ C2([0, T ];R3) is the position of the point source confined within a bounded domain
D ⊂ R3. Let Ω be a smooth bounded domain satisfying D ⊂ Ω with boundary Γ. Notice
that the trajectory of the point source remains away from Γ.

Goal: Reconstruct the trajectory followed by the source term b by measuring φ on six well
chosen points on the observation surface Γ.
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