Spectral analysis and numerical results in non-simple elastic memory plate

Imed MAHFOUDHNI

National School of Engineers of Monastir

Collaboration with Prof. Moncef Aouadi at Carthage University (Tunisia)

Control & Inverse Problems (CIP)
May 09-11, 2022 - Hotel Monatir Center, Monastir, Tunisia
1 Introduction

2 Spectral analysis

3 Numerical simulations
1. Introduction

2. Spectral analysis

3. Numerical simulations
1. Introduction

2. Spectral analysis

3. Numerical simulations
PLAN

1. Introduction
2. Spectral analysis
3. Numerical simulations
The linear anti-plane shear equations of nonsimple viscoelasticity corresponding to the isotropic homogeneous case.

\[
\begin{align*}
 u_{tt}(x, t) - \alpha \Delta u(x, t) + \gamma \Delta^2 u(x, t) \\
 + \int_0^\infty \left(m_1(s) \Delta u(x, t-s) - m_2(s) \Delta^2 u(x, t-s) \right) ds = 0
\end{align*}
\]

in \(\Omega \times [0, \infty) \), where \(\Omega \) is a bounded domain in \(\mathbb{R}^2 \) with smooth boundary \(\partial \Omega \). Where \(u \) represents the vertical displacement of the plate, \(\alpha \) and \(\gamma \) are the material coefficients and \(m_1 \) and \(m_2 \) are the memory kernels.

- **Dirichlet boundary conditions**

\[
u(x, t) = \Delta u(x, t) = 0, \quad x \in \partial \Omega, \quad t \geq 0, \quad (1)
\]

- **Initial conditions**

\[
u(x, 0) = u^0(x), \quad u_t(x, 0) = u^1(x), \quad x \in \Omega, \quad (2)
\]
Hypothesis

Concerning the memory kernels m_i, $i = 1, 2$, we assume that

(\mathbb{H}_1) \quad $m_i \in C^1(\mathbb{R}^+) \cap L^1(\mathbb{R}^+)$,

(\mathbb{H}_2) \quad $m_i(s) \geq 0 \quad \forall s \in \mathbb{R}^+$,

(\mathbb{H}_3) \quad $m_i'(s) \leq 0 \quad \forall s \in \mathbb{R}^+$,

(\mathbb{H}_4) \quad $m_i'(s) + \delta_i m_i(s) \leq 0$ for some $\delta_i > 0$, \quad $\forall s \in \mathbb{R}^+$,

(\mathbb{H}_5) \quad $m_i(0) = \int_0^\infty m_i(s)ds := m_i^0 > 0$.

Introducing the new variable $v = u_t$, setting $U = (u, v, \zeta)$, the problem can be written as a linear evolution equation in \mathcal{H} of the form

$$\frac{dU}{dt} = AU, \quad U(0) = U_0,$$

(3)

where $U(0) = (u_0, u_1, \zeta_0) \in \mathcal{H}$ and $A : D(A) \subset \mathcal{H} \to \mathcal{H}$ is the linear operator defined by

$$A \begin{pmatrix} u \\ v \\ \zeta \end{pmatrix} = \begin{pmatrix} v \\ -\alpha Au - \gamma A^2 u - \int_0^\infty m_1(s) A\zeta(s)ds - \int_0^\infty m_2(s) A^2 \zeta(s) ds \\ v - \partial_s \zeta \end{pmatrix},$$

(4)

with the domain

$$D(A) = \left\{ U \in \mathcal{H} \mid \begin{array}{l} v \in V_2 \\ \alpha Au + \gamma A^2 u + \int_0^\infty m_1(s) A\zeta(s)ds + \int_0^\infty m_2(s) A^2 \zeta(s) ds \in V_0 \\ \partial_s \zeta \in \mathcal{W}, \; \zeta(0) = 0 \end{array} \right\}.$$
Lemma

Suppose that conditions \((\mathbb{H}_1) - (\mathbb{H}_5)\) hold, then the operator \(A\) generates a semigroup of contractions in \(\mathcal{H}\).

Proof: We start by showing that operator \(A\) is dissipative. Let \(U = (u, v, \zeta)\) be in \(\mathcal{D}(A)\). From (4), the divergence theorem and the boundary conditions, it is quite easy to check that

\[
< AU, U >_{\mathcal{H}} = - < \partial_s \zeta, \zeta >_{\mathcal{W}}
\]

\[
= - \frac{1}{2} \int_0^\infty m_1(\sigma) \frac{d}{d\sigma} \|\zeta(\sigma)\|_1^2 d\sigma - \frac{1}{2} \int_0^\infty m_2(\sigma) \frac{d}{d\sigma} \|\zeta(\sigma)\|_2^2 d\sigma
\]

\[
= \frac{1}{2} \int_0^\infty m'_1(\sigma) \|\zeta(\sigma)\|_1^2 d\sigma + \frac{1}{2} \int_0^\infty m'_2(\sigma) \|\zeta(\sigma)\|_2^2 d\sigma
\]

\[
\leq - \frac{\kappa_1}{2} \|\zeta\|_{\mathcal{M}_1}^2 - \frac{\kappa_2}{2} \|\zeta\|_{\mathcal{M}_2}^2 < 0.
\]

This proves that \(A\) is a dissipative operator.
Secondly, we show that the operator A has the property that \(\text{Range } (I - A) = \mathcal{H} \), the operator A is maximal dissipative in \mathcal{H}.

Since $\mathcal{D}(A)$ is densely defined in \mathcal{H}, from the Lumer-Phillips corollary to the Hille-Yosida theorem [1], we conclude that the operator A generates a semigroup of contractions in \mathcal{H}.

Now an application of the theory of semigroups (see Pazy [1]) gives

Theorem

Suppose that conditions $(\mathbb{H}_1) - (\mathbb{H}_5)$ hold, the operator A generates a C_0-semigroup $T(t) = e^{tA}$ on \mathcal{H}. Hence, the system (3) is well-posed, i.e., for any $U_0 \in \mathcal{H}$, the system (3) has a unique weak solution $U(t) = e^{tA}U_0$. Furthermore, if $U_0 \in \mathcal{D}(A)$, $U(t) = e^{tA}U_0$, becomes the classic solution to (3).

1. Introduction
2. Spectral analysis
3. Numerical simulations
SPECTRAL ANALYSIS OF THE PROBLEM

To simplify the analysis in the next sections, we consider that the memory kernels are given by the following form

\[m_1(\tau) = m_2(\tau) = \beta e^{-\eta \tau}, \quad \beta, \eta > 0, \]

(6)

Consider the positive operators \(A \) and \(A^2 \) on \(X = L^2(\Omega) \) defined by \(A\phi = -\Delta \phi \) and \(A^2\phi = \Delta^2 \phi \) with Dirichlet boundary conditions and with the domains \(\mathcal{D}(A) = H^2(\Omega) \cap H^1_0(\Omega) \) and \(\mathcal{D}(A^2) = H^4(\Omega) \). The operator \(A \) has the following very well-known properties.

(a) The spectrum of \(A = -\Delta \) consists of only eigenvalues

\[0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n < \infty, \]

(7)

each one with multiplicity one.

(b) The eigenfunctions of \(A \) with Dirichlet boundary conditions are real analytic functions.
(c) For all $x \in \mathcal{D}(A)$ we have
\[
Ax = \sum_{n=1}^{\infty} \lambda_n \langle x, \phi_n \rangle \phi_n = \sum_{n=1}^{\infty} \lambda_n E_n x,
\]
\[
\langle \cdot, \cdot \rangle \text{ is the inner product in } X = L^2(\Omega) \text{ and }
E_n x = \langle x, \phi_n \rangle \phi_n. \text{ So } \{E_n\} \text{ is a complete family of }
\text{orthogonal projections in } X \text{ and } x = \sum_{n=1}^{\infty} E_n x, \ x \in X.
\]
(d) The fractional powered spaces X^r are given by
\[
X^r = \mathcal{D}(A^r) = \left\{ x \in X, \sum_{n=1}^{\infty} (\lambda_n)^{2r} \|E_n x\|^2 < \infty \right\}, \ r \geq 0
\]
\[
\left\{ \begin{array}{l}
\|x\|_{X^r} = \|A^r x\| = \left\{ \sum_{n=1}^{\infty} \lambda_n^{2r} \|E_n x\|^2 \right\}^{1/2}, \ x \in X^r \\
A^r x = \sum_{n=1}^{\infty} \lambda_n^r E_n x.
\end{array} \right.
\]
The problem (1) can be written as a linear evolution equation in the Hilbert space $\mathcal{H}_1 = X^1 \times X \times X$ of the form

$$z' = Az, \quad z(0) = z^0,$$

(9)

where $z = (u, u_t, \varphi)$, and $A : \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_1$ is given by

$$A = \begin{pmatrix} 0 & I & 0 \\ -(\alpha A + \gamma A^2) & 0 & \beta(A + A^2) \\ I & 0 & -\eta I \end{pmatrix}$$

(10)
Computing Az yields

$$Az = \left(\begin{array}{c} \sum_{n=1}^{\infty} E_n z_1 \\ -\sum_{n=1}^{\infty} (\alpha \lambda_n + \gamma \lambda_n^2) E_n z_0 + \beta \sum_{n=1}^{\infty} (\lambda_n + \lambda_n^2) E_n z_2 \\ \sum_{n=1}^{\infty} E_n z_0 - \eta \sum_{n=1}^{\infty} E_n z_2 \end{array} \right)$$

$$= \sum_{n=1}^{\infty} \left(\begin{array}{ccc} 0 & 1 & 0 \\ -(\alpha \lambda_n + \gamma \lambda_n^2) & 0 & \beta (\lambda_n + \lambda_n^2) \\ 1 & 0 & -\eta \end{array} \right) \left(\begin{array}{ccc} E_n & 0 & 0 \\ 0 & E_n & 0 \\ 0 & 0 & E_n \end{array} \right) \left(\begin{array}{c} z_0 \\ z_1 \\ z_2 \end{array} \right)$$

$$= \sum_{n=1}^{\infty} A_n P_n z, \ z \in \mathcal{D}(A),$$

where $\{P_n\}_{n \geq 1}$ is a complete family of orthogonal projections in the Hilbert space \mathcal{H}_1.
\[P_n = \begin{pmatrix} E_n & 0 & 0 \\ 0 & E_n & 0 \\ 0 & 0 & E_n \end{pmatrix}, \quad P_i P_j = \begin{cases} P_i & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \quad \sum_{n \geq 1} P_n = I, \]

and

\[A_n = \begin{pmatrix} 0 & 1 & 0 \\ -(\alpha \lambda_n + \gamma \lambda_n^2) & 0 & \beta (\lambda_n + \lambda_n^2) \\ 1 & 0 & -\eta \end{pmatrix}, \quad n \geq 1. \]

The characteristic equation of \(A_n \) is given by

\[\sigma^3 + \eta \sigma^2 + c_n \sigma + \eta c_n(\alpha, \gamma) - \beta c_{n,1} = 0, \]

where

\[c_n = c_n(\alpha, \gamma) = \alpha \lambda_n + \gamma \lambda_n^2, \quad c_{n,1} = c_n(1, 1) = \lambda_n + \lambda_n^2. \]
Proposition: Let suppose that condition

\[\eta > \frac{9}{8} \beta \max \left\{ \frac{1}{\gamma}, \frac{1 + \lambda_1}{\alpha + \lambda_1 \gamma} \right\} \quad (16) \]

holds and

\[\delta_0(n) = \eta^2 - 3c_n, \quad \delta_1(n) = 2\eta^3 + 9(2\eta c_n - 3\beta c_{n,1}), \]

\[C(n) = \sqrt[3]{\frac{1}{2} \left(\delta_1(n) + \sqrt{\delta_1^2(n) - 4\delta_0^3(n)} \right)} \quad (17) \]

where \(\sqrt{\cdot} \) and \(\sqrt[3]{\cdot} \) stand for the main branch of complex square and cubic roots. The spectrum of (14) consists of a sequence of conjugate pairs \(\{\sigma_1(n)\}_{n=1}^{\infty}, \{\sigma_2(n) = \overline{\sigma_1(n)}\}_{n=1}^{\infty} \) and a real sequence \(\{\sigma_0(n)\}_{n=1}^{\infty} \)

where

\[\sigma_i(n) = -\frac{1}{3} \left(\eta + C(n)e^{\frac{2i\pi}{3}i} + \frac{\delta_0(n)}{C(n)}e^{-\frac{2i\pi}{3}i} \right), \quad i = 0, 1, 2, \quad n \geq 1, \quad (18) \]

where \(i \) is the imaginary unit \((i^2 = -1) \). Moreover, we have

\[\Re \sigma_i(n) < 0 \text{ for all } i = 0, 1, 2, \quad n \geq 1. \quad (19) \]
Lemma

We suppose that condition (16) holds. The asymptotic expressions of the eigenvalues $\sigma_i(n), i = 0, 1, 2, n \geq 1$, of (14) are given by

$$\sigma_0(n) = \frac{\beta}{\gamma} - \eta + O(\lambda_n^{-1}) \quad \text{and} \quad \sigma_1(n) = -\frac{\beta}{2\gamma} - i\left(\frac{\alpha}{2\sqrt{\gamma}} + \sqrt{\gamma}\lambda_n\right) + O(\lambda_n^{-1}),$$

as $n \to \infty$.
Remark : We see that under the condition (16), we have \(\sigma_i(n) < 0 \) for all \(i = 0, 1, 2 \) and \(n \geq 1 \), which agrees with (19).
In the following we use Lemma 2 to show that \(\Re \sigma_i(n) \) is strictly monotone.

Lemma

We suppose that condition (16) holds. Then, \(\{\Re \sigma_i(n)\}_{n \geq 1} \) is strictly monotone, more precisely \(\{\sigma_0(n)\}_{n \geq 1} \) is strictly increasing and \(\{\Re \sigma_1(n)\}_{n \geq 1} = \{\Re \sigma_2(n)\}_{n \geq 1} \) is strictly decreasing with

\[
\begin{align*}
\sigma_0(1) &< \cdots < \sigma_0(n - 1) < \sigma_0(n) \\
\sigma_0(n) &< \Re \sigma_1(n) < \Re \sigma_1(n - 1) < \cdots < \Re \sigma_1(1) < 0.
\end{align*}
\]
We suppose that condition (16) holds. The semigroup \(\{T(t)\}_{t \geq 0} \) decays exponentially to zero,

\[
\|T(t)\| \leq Ne^{\mu t}, \quad t \geq 0,
\]

where \(N \) is a positive constant and \(\mu \) is the optimal decay rate given by

\[
\mu = \sigma_0(1) = -\frac{1}{3} \left(\eta - \frac{C(1)}{2} - \frac{\delta_0(1)}{2C(1)} \right) < 0.
\]

Definition (Chebyshev points)

We introduced the Chebyshev-Gauss-Lobatto points defined by

$$x_i = \cos\left(\frac{i\pi}{N}\right), \quad i = 0, 1, \ldots, N.$$ \hspace{1cm} (23)

it is the solution of the polynomial

$$T_k(x) = \cos(k \arccos(x)) \quad \text{if} \quad |x| \leq 1$$ \hspace{1cm} (24)

The Chebyshev polynomials of the first kind are defined by the relation

$$T_0(x) = 1, \quad T_1(x) = x, \quad T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x).$$ \hspace{1cm} (25)
Definition (Chebyshev points)

Given a grid function F defined on the Chebyshev points, we obtain a discrete derivative DF in two steps:

1. Let P be the unique polynomial of degree $\leq N$ with $P(x_j) = F_j$, $0 \leq j \leq N$.

2. Set $DF_j = P'(x_j)$. $\iff DF = D_N \times F$.

$$P(x) = \sum_{i=0}^{N} L_i(x)F_i \quad \text{where} \quad L_i(x_j) = \delta_{i,j} \quad \text{(Lagrange Polynomial)} \quad (26)$$

This operation is linear, so it can be represented by multiplication by $(N + 1) \times (N + 1)$ matrix, which we shall denote by D_N.

Theorem (Chebyshev differentiation matrix.) L.N. Trefethen [1]

For each $N \geq 1$, the Chebyshev spectral differentiation matrix D_N is defined by:

\[
(D_N)_{00} = \frac{2N^2+1}{6}, \quad (D_N)_{NN} = -\frac{2N^2+1}{6}.
\]

\[
(D_N)_{jj} = \frac{2}{(1-x_j^2)}, \quad j = 1, \ldots, N - 1.
\]

\[
(D_N)_{ij} = \frac{c_i}{c_j} \frac{(-1)^{i+j}}{x_i-x_j}, \quad i \neq j = 1, \ldots, N - 1.
\]

where

\[
c_i = \begin{cases}
2 & \text{i = 0, or } N. \\
1 & \text{otherwise}
\end{cases}
\]
We present an approach based on the spectral method for spatial discretization and we use the Euler decomposition for the time variable. We denote by $\mathcal{U}^n = (\tilde{u}(y_i, t_n)_{0 \leq i \leq N})$ and $\mathcal{W}^n = \Delta \mathcal{U}^n = (w(y_i, t_n)_{0 \leq i \leq N})$ the solutions evaluated at the Chebyshev collocation points. Thus, for $n = 1, \ldots, Nt$, becomes

$$\frac{1}{dt^2} (\mathcal{U}^{n+1} - 2\mathcal{U}^n + \mathcal{U}^{n-1}) - \alpha \mathcal{W}^n + \gamma \Delta \mathcal{W}^n = F[\mathcal{W}^n], \quad (29)$$

where $\mathcal{W}^n = \Delta \mathcal{U}^n$ and the memory term $F[\mathcal{W}^n]$ can be discretized by the trapezoidal rule, as

$$F[\mathcal{W}^n] = \beta dt \left(\frac{1}{2} (e^{-\eta t_n} (-\mathcal{W}^0 + \Delta \mathcal{W}^0) + (-\mathcal{W}^n + \Delta \mathcal{W}^n)) \right. + \left. \sum_{i=1}^{n-1} e^{-\eta t_{n-i}} (-\mathcal{W}^i + \Delta \mathcal{W}^i) \right). \quad (30)$$
Thus, we can write this method in the following algorithm.

Algorithm 1 based on spectral method

Initialize:

\[n = 0, \text{ we note by } U^0 = (u(x_j, 0)_{0 \leq j \leq N}) \text{ and } \mathcal{W}^0 = \tilde{\Delta} U^0. \]

\[n = 1, \text{ we note by } U^1 = ((u^0(x_j) + dtu^1(x_j))_{0 \leq j \leq N}) \text{ and } \mathcal{W}^1 = \tilde{\Delta} U^1, \]

for \(n = 1, \ldots, Nt \) do

Step 1. Compute the second member of the system defined in (30) by

\[
F[\mathcal{W}^n] = \beta dt \left(\frac{1}{2} (e^{-\eta^n}LW^0 + LW^n) + \sum_{i=1}^{n-1} e^{-\eta^{n-i}}LW^i \right) \tag{31}
\]

Step 2. Solve the equation (29) and we define \(U^{n+1} \) by the solution \(U \) at \(t = t_{n+1} \), then inject the boundary condition

\[
U^{n+1} = 2U^n - U^{n-1} + dt^2 \left(F[\mathcal{W}^n] + \alpha \mathcal{W}^n - \gamma \tilde{\Delta} \mathcal{W}^n \right).
\]

\[
U^{n+1}(-1) = U^{n+1}(1) = 0 \tag{32}
\]

Step 3. Compute the solution \(\mathcal{W} \) at \(t = t_{n+1} \) and inject the boundary condition.

\[
\mathcal{W}^{n+1} = \tilde{\Delta} U^{n+1} \text{ and } \mathcal{W}^{n+1}(-1) = \mathcal{W}^{n+1}(1) = 0. \tag{33}
\]

end for
For the example 1D, we choose the values $T = 5$, $\eta = 10$, $\beta = 8$, $\alpha = 2$ and $\gamma = 1$ with the following initial data,

$$u(x, 0) = \sin(\pi x) \quad \text{and} \quad u_t(x, 0) = 0, \quad x \in [0, 1].$$

Figure – The displacement $u(x, t)$ for time interval $[0, 5]$ (left) on the points $x_0 = 1/6$, $x_1 = 3/4$ and $x_2 = 1$ (right).
Figure – The Energy $E(t)$ in the time interval $[0, 5]$ (left) the logarithmic energy (right)

Figure 1 shows that the displacement $u(x, t)$ rapidly decreases to zero when time increases.
In this example, we choose $T = 20$, $\eta = 0.9$, $\beta = 5 \times 10^{-3}$, $\alpha = 5 \times 10^{-2}$ and $\gamma = 9 \times 10^{-3}$ and the following initial data

$$u(x, y, 0) = \sin(\pi x) \sin(\pi y) \quad \text{and} \quad u_t(x, y, 0) = 0, \quad (x, y) \in [0, 1]^2.$$
Figure – The energy $E(t)$ in the time interval $[0, 20]$ (left) the logarithmic energy (right)
Based, on the roots MATLAB function, one can plot the eigenvalues solutions to (14). We show the distribution of the eigenvalues $\sigma_0(n)$ and $\Re(\sigma_1)(n) = \Re(\sigma_2)(n)$ in the case $\alpha - \gamma \geq 0$. To validate the asymptotic development we choose the following values $\eta = 10$, $\beta = 8$, $\alpha = 2$ and $\gamma = 1$.
Thank you for your attention