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Categories of systems with Time-delay

First-order linear Differential-difference equation

a0ẏ(t) + a1ẏ(t − τ) + b0y(t) + b1y(t − τ) = 0, (?)

An equation of the form (?) is said to be :
I of retarded type if a0 6= 0 and a1 = 0,
I of neutral type if a0 6= 0 and a1 6= 0,
I of advanced type if a0 = 0 and a1 6= 0.
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Time-delay Systems with discrete (constant) delays

ẋ(t) +
N∑

k=1

Ak ẋ(t − τk) =
N∑

k=0

Bkx(t − τk) (1)

I x = (x1, . . . , xn) ∈ Rn the state-vector
I initial conditions belonging to the Banach space C([−τN , 0],Rn).
I τj , j = 1 . . .N are s.t. τ0 = 0 and 0 < τ1 < τ2 < . . . < τN

I Aj , Bj ∈Mn(R) for j = 0 . . .N.
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Spectral properties and obstacles

I Characteristic function of (1) : ∆ : C× RN
+ → C

I ∆(s) = det
(
s (I +

∑N
k=1 Ak e

−τk s)−
∑N

k=0 Bk e
−τk s

)
=
∑Ñ

k=0 Pk(s) eσk s

I Spectrum χ = χ+ ∪ χ0 ∪ χ− zeros of ∆

I Zero solution of (1) is AS if χ = χ−
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Retarded equations spectrum distribution

Consider
ẋ = A0x(t) + A1x(t − τ), (2)

∆(s) = Q0(s) + Qτ (s) e−τ s ,

The degree of a quasipolynomial is the sum of the involved polynomials plus
the number of delays

Proposition
If s is a characteristic root of system (2) and deg(Q0) > deg(Qτ ), then it
satisfies

|s| ≤ ||A0 + A1 e
−τs ||2. (3)

The above proposition combined with the triangular inequality provides a
generic envelope curve around the characteristic roots corresponding to (2).
Retarded-type AS ≡ ES

W. Michiels and S.-I. Niculescu.
Stability and stabilization of time-delay systems,
ser. Advances in Design and Control. SIAM, 2007.
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Spectrum envelope

Figure: The dashed red line gives the generic spectrum envelope. In solid blue, a
simplified contour for applying the argument principle to count the roots of the the
quasipolynomial in the region.
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Wright-Hayes Equation

The linearized system is given by :

ẋ(t) + a0 x(t) + a1 x(t − τ) = 0,

with (a0, a1, τ) ∈ R2 × R∗+, the characteristic function ∆ :

∆(s) = s + a0 + a1 e
−sτ .

Zero is a spectral value if and only if a0 + a1 = 0.

∆′(s, τ) = 1− τ a1 e−sτ ,

∆′′(s, τ) = τ2 a1 e
−sτ .

The multiplicity of the zero spectral value is at most two reached for
τ = 1/a1, a0 = −a1.
The degree of a quasipolynomial is a bound of the maximal multiplicity of its
roots. Such a bound is reached only for real roots.

I. Boussaada and S-I. Niculescu.
Characterizing the codimension of zero singularities for time-delay systems.
Acta Applicandae Mathematicae, 145(1) :47–88, 2016.
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Neutral equations spectrum distribution

∆(s) = Q0(s) + Qτ (s)e−sτ (4)

where deg(Q0) = deg(Qτ ). Let α = lim|s|→∞Qτ (s)/Q0(s) :

Proposition

1. If |α| < 1 then the roots of ∆ of large modulus are asymptotic to a
vertical line <(s) ≈ log(|α|)/τ in the LHP. The number of roots of ∆ in
the right of <(s) = log(|α|)/τ + ε is finite ∀ε > 0.

2. If |α| > 1 then ∆ has infinitely unstable roots, asymptotic to a vertical line
<(s) ≈ log(|α|)/τ which is in the RHP.

J. R. Partington and C. Bonnet.
h∞ and bibo stabilization of delay systems of neutral type.
Systems & Control Letters, 52(3) :283 – 288, 2004.

R. Bellman and K. Cooke.
Differential-difference equations.
New York : Academic Press, 1963.
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Figure: (Left) Spectrum distribution of ∆(s) =
(
− s2

2 + 4s
3 −

5
3

)
e−s + s2 + 3 s + 3. (Right)

Spectrum distribution of ∆(s) =
(
−2 s2 + 4s

3 −
5
3

)
e−s + s2 + 3 s + 3.

R. Bellman and K. Cooke.
Differential-difference equations.
New York : Academic Press, 1963.

W. Michiels and S.-I. Niculescu.
Stability and stabilization of time-delay systems,
ser. Advances in Design and Control. SIAM, 2007.
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Why delayed controller design ?

Control systems often operate in the presence of delays, due to the time it
takes to acquire the information needed for decision-making, to create control
decisions and to execute these decisions.
Consider the linear finite-dimensional system with input delay

ẋ = Ax(t) + Bu(t − τ) (5)

I A, B real valued matrices and τ is the delay of the system.
I A is not Hurwitz and the pair (A,B) is controllable.

11 / 41



Prerequisites & Motivations MID Application & Numerics Perspectives

Finite pole-placement method (FPP)

I Generate a prediction of the state over one delay interval :

xp(t, t + τ) = eAτx(t) +

∫ τ

0
eAθ B u(t − θ) dθ.

I Apply a feedback of the predicted state :

u(t) = K xp(t, t + τ).

I Compensating the delay effect in closed-loop

Z. Artstein.
Linear systems with delayed control : a reduction.
IEEE Transactions on Automatic Control, 27(4), 869-879, 1982.

A. Manitius and A. Olbrot.
Finite spectrum assignment problem for systems with delays.
IEEE Transactions on Automatic Control, 24 : (1), 541-552, 1979.

D Brethé, JJ Loiseau.
A result that could bear fruit for the control of delay-differential systems.
Proc. 4th IEEE Mediterranean Symp. Control Automation : 168-172, 1996.
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First, rewrite 
ẋ(t) = Ax(t) + Bu(t − τ)

u(t) = KeAτx(t) + K

∫ τ

0
eAθ B u(t − θ) dθ.

Using Laplace transform, one gets :

CE = det

[
s I − A −Be−sτ

−Ke−τA I − BK
∫ τ
0 eθ(A−sI )dθ

]

which gives :
CE = det(s I − A− BK).

S. Mondie and W. Michiels.
Finite spectrum assignment of unstable Time-delay systems.
IEEE Transactions on Automatic Control, 48(12), 2207-2212, 2003.
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FPP limitation : An example

ẋ(t) = x(t) + u(t − 1),

FFP suggests the controller

u(t) = −2
(
ex(t) +

∫ 1

0
eθ u(t − θ) dθ

)
.

guaranteeing in closed-loop a spectral
value at s = −1. Approximating the
integral term :

u(t) = −2

(
e x(t) +

1
N

(
u(t)

2
+

e u(t − 1)

2
+

N−1∑
l=1

eθ u(t −
l

N
)

))
.

K. Engelborghs, M. Dambrine, and D. Roose.
Limitations of a class of stabilization methods for delay systems.
IEEE Transactions on Automatic Control, 46 : 336-339, Feb. 2001.
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Symmetry forcing multiplicity

BAM (Bidirectional Associative Memory)

ẋ1 = −ax1 + bx4(t − τ) + cx5(t − τ) + cx6(t − τ),

ẋ2 = −ax2 + bx5(t − τ) + cx6(t − τ) + cx4(t − τ),

ẋ3 = −ax3 + bx6(t − τ) + cx4(t − τ) + cx5(t − τ),

ẋ4 = −ax4 + bx1(t − τ) + cx2(t − τ) + cx3(t − τ),

ẋ5 = −ax5 + bx2(t − τ) + cx3(t − τ) + cx1(t − τ),

ẋ6 = −ax6 + bx3(t − τ) + cx1(t − τ) + cx2(t − τ),

BAM displays a dihedral group D3 of order 6, which is generated by the cyclic
subgroup Z3 together with a flip of order 2.

∆(s) = ∆+(s).∆−(s)

with ∆±(s) =
(
s + a± (2c + b)e−sτ

)
.
(
s + a± (b − c)e−sτ

)2
I. Boussaada and S. I. Niculescu.
Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials : A
Vandermonde-based approach.
IEEE Transactions on Automatic Control, 61 :1601-1606, 2016.
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Link between ](χ+) and χ0

] : cardinality, < : Real part, = : Imaginary part, MU for multiplicity.
In [1], ](χ+) corresponding to a given retarded equation is established if
χ0 = ∅. The following is proved in [2] :
Theorem

](χ+) =
n − ](χ0)

2
+

(−1)r

2
sgnI(MU(0))(0) +

r∑
j=1

sgnI(ρj),

I R(y) = <(i−n ∆(i y)) and I(y) = =(i−n∆(iy))

I ρ1, . . . , ρr be the positive roots of R(y) (count multiplicity).

G. Stépán.
Retarded Dynamical Systems : Stability and Characteristic Functions.
Longman Scientific and Technical, 1989.

B.D. Hassard.
Counting roots of the characteristic equation for linear delay-differential systems.
Journal of Differential Equations, 136(2) :222 – 235, 1997.
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Kummer hypergeometric functions

For α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending
factorial, defined inductively as (α)0 = 1 and (α)k+1 = (α + k)(α)k .

Definition
Let a, b ∈ C and assume that b is not a nonpositive integer. The Kummer
confluent hypergeometric function Φ(a, b, ·) : C→ C is the entire function
defined for z ∈ C by the series

Φ(a, b, z) =
∞∑
k=0

(a)k
(b)k

zk

k!
, (6)

where we recall that, for α ∈ C and k ∈ N, (α)k is the Pochhammer symbol.

The series in (6) converges for every z ∈ C and the function Φ(a, b, ·) satisfies
the Kummer differential equation

z
∂2Φ

∂z2
(a, b, z) + (b − z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0 (7)
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Proposition
Let a, b ∈ C and assume that <(b) > <(a) > 0. Then, for every z ∈ C, we have

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0
eztta−1(1− t)b−a−1 dt, (8)

where Γ denotes the Gamma function.

Proposition
Let a, b ∈ R be such that b ≥ 2.

1. If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are purely imaginary.

2. If b > 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy <(z) > 0.

3. If b < 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy <(z) < 0.

4. If b 6= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b − 2a)2=(z)2 − (4a(b − a)− 2b)<(z)2 > 0.

I. Boussaada, G. Mazanti and S-I. Niculescu.
Some Remarks on the Location of Non-Asymptotic Zeros of Whittaker and Kummer
Hypergeometric Functions.
Bulletin des Sciences Mathématiques, 174, 2021.
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Exponential decay assignment in first order equations :

The MID first example

The MID property corresponds to the conditions on the system parameters
under which a multiple spectral value corresponds to the spectral abscissa

ẋ(t) + a0 x(t) + u(t) = 0 where u(t) = a1 x(t − τ). (9)

Function
∆(s) = s + a0 + a1 e

−sτ . (10)

admits a double root at s = s0 if and only if

s0 = −a0 −
1
τ

and a1 =
e−a0τ−1

τ
. (11)

s0 is the RMR. If in addition, a0 > − 1
τ
the zero solution of system (9) is AS.

N. D. Hayes.
Roots of the transcendental equation associated with a certain difference-differential equation.
J. of the London Math. Society, s1-25(3) :226–232, 1950.

I. Boussaada, H. Unal, and S-I. Niculescu.
Multiplicity and stable varieties of time-delay systems : A missing link.
In Proceeding of MTNS, pages 1-6, 2016.

I. Boussaada, S-I. Niculescu, A. El-Ati, R. Pérez-Ramos and K. Trabelsi.
Multiplicity-induced-dominancy in parametric second-order delay differential equations : Analysis
and application in control design.
ESAIM : COCV, 26, 57, 2020.
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Figure: (Left)The distribution of the spectrum corresponding to
s + a0 + e−a0τ−1

τ
e−s τ = 0 for a0 = τ = 1. (Right) The rightmost root corresponding

to Wright-Hayes equation as a function of the delay τ (red solid line) for a fixed value
of a0 = 1.
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Sketch of the proof

If a1 satisfy (11) then ∆(s) = s + a0 + a1 e
−sτ can be written

∆(s) = (s − s0)

(
1 +

e−τ(s−s0) − 1
τ (s − s0)

)
= (s − s0)

(
1−

∫ 1

0
e−τ(s−s0) t dt

) (12)

To prove that s0 is the spectral abscissa, let assume that there exists
s1 = ζ1 + j η1 a root of (12) such that ζ1 > s0. Then,

1 =

∫ 1

0
e−τ(ζ1+j η1−s0) t dt = <

(∫ 1

0
e−τ(ζ1−s0+j σ1) t dt

)
≤
∣∣∣∣∫ 1

0
e−τ(ζ1−s0+j σ1) t dt

∣∣∣∣ ≤ ∫ 1

0
e−τ(ζ1−s0) t dt < 1,

which proves the inconsistency of the hypothesis ζ1 > s0.
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Multiple roots are not necessarily dominant

Sparsity inducing loss of dominancy

Let revisit the problem of stabilization of a chain of integrators :

∆(s) = s2 + α e−τ s . (13)

The maximal admissible multiplicity is 2 which is reached iff

α = −4 e−2

τ2
, s = − 2

τ
.

⇒ 2 distinct delays NSC stabilize a double integrators.
⇒ There exists at least a root for (13) with positive real part.
⇒ s0 = − 2

τ
, while being a multiple root it cannot be dominant.

V.L. Kharitonov, S-I. Niculescu, J. Moreno, and W. Michiels.
Static output feedback stabilization : necessary conditions for multiple delay controllers.
IEEE Trans. on Aut. Cont., 50(1) :82–86, 2005.

S-I. Niculescu and W. Michiels.
Stabilizing a chain of integrators using multiple delays.
IEEE Trans. on Aut. Cont., 49(5) :802–807, 2004.
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The generic single-delay differential equation

Consider

y (n)(t)+an−1y
(n−1)(t)+· · ·+a0y(t)+αmy

(m)(t−τ)+· · ·+α0y(t−τ) = 0, (14)

y is real-valued, n is a positive integer, m is a nonnegative integer such that
m ≤ n, ak , αl ∈ R for k ∈ J0, n − 1K and l ∈ J0,mK are constant coefficients,
and τ > 0. Equation (14) is said of retarded type if m < n and of neutral type
if m = n. The asymptotic behavior of solutions (14) is characterized by the
function ∆ : C→ C defined for s ∈ C by

∆(s) = sn +
n−1∑
k=0

aks
k + e−sτ

m∑
k=0

αks
k . (15)
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Lemma
Let s0 ∈ R, ∆ be the quasipolynomial from (15), and consider the
quasipolynomial ∆̃ : C→ C obtained from ∆ by the change of variables
z = τ(s − s0) and multiplication by τ n, i.e.,

∆̃(z) = τ n∆
(
s0 + z

τ

)
. (16)

Then

∆̃(z) = zn +
n−1∑
k=0

bkz
k + e−z

m∑
k=0

βkz
k , (17)

where
bk =

(
n

k

)
τ n−ksn−k

0 + τ n−k
n−1∑
j=k

(
j

k

)
s j−k
0 aj , for every k ∈ J0, n − 1K,

βk = τ n−ke−s0τ
m∑
j=k

(
j

k

)
s j−k
0 αj , for every k ∈ J0,mK.

(18)
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GMID property

Theorem
Consider the quasipolynomial ∆ given by (15) and let s0 ∈ R. The number s0
is a root of multiplicity DPS = m + n + 1 of ∆ if and only if

ak =

(
n

k

)
(−s0)n−k + (−1)n−k n!

n−1∑
j=k

(
j
k

)(
m+n−j

m

)
s j−k
0

j! τ n−j
for every k ∈ J0, n − 1K,

αk = (−1)n−1 es0τ
m∑
j=k

(−1)j−k (m + n − j)! s j−k
0

k! (j − k)! (m − j)! τ n−j
for every k ∈ J0,mK.

(19)

By considering the first equation in (19) with k = n− 1, one obtains the simple
and interesting relation between s0, τ , and an−1 given by

s0 = −an−1
n
− m + 1

τ
. (20)
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GMID property : Forcing the multiplicity

Lemma
Let n ∈ N∗ and m ∈ N satisfy m ≤ n, b0, . . . , bn−1, β0, . . . , βm ∈ R, and ∆̃ be
the quasipolynomial given by (17). Then 0 is a root of multiplicity
DPS = m + n + 1 of ∆̃ if and only if

bk = (−1)n−k n!

k!

(
m + n − k

m

)
for every k ∈ J0, n − 1K,

βk = (−1)n−1
(m + n − k)!

k!(m − k)!
for every k ∈ J0,mK.

(21)

Moreover, if (21) is satisfied, then, for every z ∈ C,

∆̃(z) =
zm+n+1

m!

∫ 1

0
tm(1− t)ne−zt dt. (22)
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GMID property : Dominancy

Theorem
Consider the quasipolynomial ∆ given by (15) and let s0 ∈ R.

1. (Retarded) If m < n and (19) is satisfied, then s0 is a strictly dominant
root of ∆.

2. (Neutral) If m = n and (19) is satisfied then, s0 is a dominant root of ∆
and, for every other complex root s of ∆, one has <(s) = s0. More
precisely, the set of roots of ∆ is {s0 + i ζ

τ
such that ζ ∈ Ξn}, where

Ξn =


ζ ∈ R such that tan

(
ζ

2

)
=

ζ

b n−1
2 c∑
`=0

(−1)`
(2n − 2`− 1)!

(2`+ 1)!(n − 2`− 1)!
ζ2`

b n2 c∑
`=0

(−1)`
(2n − 2`)!

(2`)!(n − 2`)!
ζ2`


.
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Stabilizing delayed action
Delayed PD controller : u(t) = kp θ(t − τ) + kd θ̇(t − τ)

The adimensional dynamics of the inverted
pendulum is governed(
1− 3ε

4
cos2(θ)

)
θ̈+

3ε
8
θ̇2 sin(2θ)−sin θ+u cos θ = 0,

où ε = m/(m + M). M
u

θ

m

τ = 0 τ = 0.13s τ = 0.17s τ = 0.17s+MID
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P3δ Software
https://cutt.ly/p3delta
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Mach number regulation in a wind tunnel model

The Mach number regulation in a wind tunnel is based on the Navier-Stokes
equations for unsteady flow and contains control laws for temperature and
pressure regulation.
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The following simplified model of Mach number regulation described in [1]
consists of : 

ξ̇1(t) = −aξ1(t) + k a ξ2(t − τ)

ξ̇2(t) = ξ3(t)

ξ̇3(t) = −ω2 ξ2(t)− 2ζωξ3(t) + ω2u(t)

(23)

ξ1 the dynamic response of the Mach number perturbations, ξ2 a small
perturbations in the guide vane angle actuator a, ω, ζ, k and τ are positive
parameters depending on the operating point and presumed constant when the
perturbations ξi are small.

A. Manitius.
Feedback controllers for a wind tunnel model involving a delay : Analytical design and numerical
simulation.
IEEE TAC, 29(12) :1058–1068, 1984.
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Consider the control law : u(t) = − α
ω2 ξ2(t)− β0

ω2 ξ2(t − τ)− β1
ω2 ξ3(t − τ). In

our case, the corresponding quasipolynomial function is given by :

∆(s)=(s+a)
(
(sβ1+β0)e−sτ+s2+2 s ζ ω+ω2+α

)
. (24)

s− =
−2− ζ ω τ

τ

is the rightmost root of the second factor of function (24), which insures the
stability of the steady state solution.

I. Boussaada, S-I. Niculescu, and K. Trabelsi.
Toward a decay rate assignment based design for time-delay systems with multiple spectral values.
In Proceeding of MTNS, pages 864–871, 2018.
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Piezo-actuated flexible beam, clamped at one edge

I Euler-Bernoulli PDE modelling +Neumann and Dirichlet BC (coupled
PDEs + nonlinear BC).

I Finite Element Modelling (huge number of dof).

Mqq q̈(t) + Dqq q̇(t) + Kqqq(t) = Mqww(t)−Kquu(t)

y(t) = Kqyq(t)

z(t) = Fzww(t)− Fzuu(t)− Fzqq(t)− Fzv q̇(t)

I Modal Analysis

Mode 1 at 37.15 Hz

Mode 3 at 227.3 Hz Mode 4 at 621.2 Hz

Figure: Three controllable & observable modes
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In Laplace domain, the transfert functions :

z(s) =
Nwz(s)

ψ(s)
w(s) +

Nuz(s)

ψ(s)
u(s)

y(s) =
Nwy (s)

ψ(s)
w(s) +

Nuy (s)

ψ(s)
u(s)

n0 ' 0.013, nr0 ' 77.287

d0 ' 1.001, dr0 ' 6.373

τ ' 0.004.

s0 ' −244.1 approximate the rightmost root
of multiplicity 3.

C(s) =
N(s, τ)

D(s, τ)

N(s, τ) = n0 + nr0 e
−τ s

D(s, τ) = d0 + dr0 e
−τ s .
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Figure: Time responses of the measured output y on the left, of the controlled output
z on the middle and of the closed-loop control signal u on the right.

I. Boussaada, S-I. Niculescu, S. Tliba, and T. Vyhlídal.
On the coalescence of spectral values and its effect on the stability of time-delay systems :
Application to active vibration control.
Procedia IUTAM, 22(Supplement C) :75 – 82, 2017.
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The MID property : A breach for systematic PID tuning

Pτ (s)

K(s)

−

Figure: A feedback control system

where
Pτ (s) = P0(s) e−τ s and KPID(s) = kp + kd s +

ki
s
, (25)

with P0(s) is a delay-free plant and the aim is to tune the standard PID gains
(ki , kp, kd) achieving the stabilization in closed-loop.
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First order delayed plant

The resulting closed-loop plant is given by :

M(s) =

(
kp s + ki + s2kd

)
e−sτ

s2 − sp + e−sτkp s + e−sτki + e−sτ s2kd
. (26)

The corresponding characteristic equation :{
∆(s) = Q0(s) + Qτ (s)e−sτ where

Q0(s) = s2 − sp and Qτ (s) = kd s
2 + kp s + ki .

(27)
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Theorem
i) For arbitrary kp , ki , kd , τ , the root’s multiplicity of (27) is bounded by 4.

ii) The quasipolynomial (27) admits a multiple real spectral value at

s± =
−τ p − 6±

√
τ2p2 + 12

2τ
(28)

with algebraic multiplicity 4 if, and only if,

kd=
(4 + 2 τ s± − τ p) eτ s±

2
,

kp=−
((
8 τ + τ2s±

)
p − 18− 12 τ s±

)
eτ s±

τ
,

ki=

(
(τs± + 3) τ2p2+(−12τs±−60) τp+108+84 τ s±

)
eτ s±

2τ2
.

(29)

iii) If (29) is satisfied then s = s+ is the rightmost root of quasipolynomial function
(27).

D. Ma, I. Boussaada, J. Chen, C. Bonnet, S-I. Niculescu and J. Chen.
PID control design for first-order delay systems via MID pole placement : Performance vs.
robustness.
Automatica, 137, 2022.
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Perspectives in the control of PDEs
Transport and propagation

∂tϕ(t, x) + λ∂xϕ(t, x) = 0 with (t, x) ∈ [0, ∞)× (0, L).

λ constant and boundary conditions as a PI
controller :ϕ(t, 0) = kpϕ(t, L) + ki

∫ t

0 ϕ(ν, L) dν.

In frequency domain ∆(s) = s − (ki + kp s)e−
L
λ

s .

MID : Forcing a triple spectrale value allows to
assign the decay rate s0 = −2λ/L via le choix
kp = −e−2 et ki = −4 e−2 λ/L. La condition
initiale : ϕ(0, x) = sin(2πx) avec L

λ
= 1.

I. Boussaada, G. Mazanti and S-I. Niculescu.
The generic multiplicity-induced-dominancy property from retarded to neutral delay-differential
equations : When delay-systems characteristics meet the zeros of Kummer functions.
Comptes rendus Mathématique, 360, 349-369, 2022.
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Conclusion and potential extensions

I We proposed a new pole placement paradigm based on two properties
MID and CRRID.

I The ensuing control strategy is robust w.r.t uncertain parameters and easy
to implement.

I Systematic perspective in PID tuning for infinite dimensional systems.
I The effectiveness of the strategy is demonstrated on mechanical

engineering applications : vibration damping
I Robustness : the mechanism coalescence/splitting for TDS is described in

W. Michiels, I. Boussaada and S-I. Niculescu.
An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue
problems and connections with the linearization for the delay eigenvalue problem.
SIAM J. Matrix Analysis Applications, 38(2) :599–620, 2017.

I The effect of coexistence of distinct real roots on the AS of TDS’s trivial
solution (allowing to the CRRID) in

F. Bedouhene, I. Boussaada and S-I. Niculescu.
Real spectral values coexistence and their effect on the stability of time-delay systems :
Vandermonde matrices and exponential decay.
Comptes Rendus. Mathématique, Tome 358 (2020).

I Mechanical engineering applications : vibration damping
I Extensions to wave and transport equations opened new perspectives for

decay assignment for PDEs.
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