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Motivation 1: robustness and resolution of solution of
inverse source problems

(∆ + k2)u = f in R2

supp f

∂D

U = u|∂D

supp f ⊆ D0

D

D0

R2

R
R0

f ∈ E ′(R2)

+ radiation conditions K. (2018). J Phys Commun

Forward operator: U(x) = Ff (x) =
∫
y∈D0

H
(1)
0 (k |x − y |)f (y), x ∈ ∂D

Bao, Lin, & Triki (2010). J Differ Equ:

F : L2(D0)
cpct.−→ L2(∂D), F =

∑
m∈Z

σm(·, ψm)ϕm

σ−m = σm, ψm(x) ∝ Jm(k |x |)e im∠x , ϕm(∠x) ∝ e im∠x
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Bounds on the ’bandwidth’ B of F

K. (2018). J Phys Commun:

Definition: B = argminm∈N0
{σm+n > σm+n+1 for all n ∈ N0}.

Theorem: B ≥ argminm∈N0
{jm,1 ≥ kR0} (tight)

Conjecture: B ≤ argminm∈N0
{ym,1 ≥ kR0} (tight)

Theorem: For the source-to-far -field operator, σm = O((kR0/2)
m/m!)

when m ≥ argminm∈N0
{ym,1 ≥ kR0} (with explicit bound)

Kirkeby, Henriksen, & K. (2020). Inverse Probl :

Theorem: For the Helmholtz equation in R3, we have
ψm,n(x) ∝ jm(k |x |)Y n

m(x/|x |) and ϕm,n ∝ Y n
m(x/|x |).

Theorem: B ≥ argminm∈N0
{jm+1/2,1 ≥ kR0}.

Kirkeby, Henriksen, & K. (2020); K., Kirkeby, & Knudsen (2018). Inverse Probl :

Stability of reconstruction from a finite number of measurements in the
multi-frequency ISP.
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Some related work

Griesmaier & Sylvester (2017). SIAM J Appl Math
Griesmaier & Sylvester (2016). SIAM J Appl Math
Griesmaier, Hanke, & Sylvester (2014). SIAM J Numer Anal
Griesmaier, Hanke, & Raasch (2012). SIAM J Sci Comput

▶ spectral cutoff of the source-to-far-field operator (”restricted Fourier
transform”) in R2 and R3; the singular values decay rapidly when
|m| ≥ kR0.

▶ windowed Fourier transform

▶ far-field splitting and uncertainty principles for ISP

Pierri & Moretta (2020,2021). Electronics
Xu & Janaswamy (2006). IEEE Trans Antennas Propag

▶ spectral analysis of electromagnetic radiation operators

▶ applications in antenna design and measurements
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Robustness of solution of inverse source problems

▶ f † = F †U ≈
∑

|m|≤C σ
−1
m (U, ϕm)L2(∂D)ψm

▶ kR = kR0 = 10π
▶ B ≥ 26 (K. (2018). J Phys Commun)

▶ mnoise = 26 vs. mnoise = 30, for same amplitude of noise component
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Motivation 2: resolution of control of solutions of PDE

Photonic jet control by amplitude- and phase-modulated illumination of a
dielectric micro-lens.

K., Scheel, Pedersen, and Hansen, in review.
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▶ Define the ’lens contrast’ α = k2
0 (n

2
L − 1), the characteristic function

χL(x) =

{
1, x ∈ L,

0 otherwise,
(1)

and the piecewise constant wavenumber

k(x) = k0[1 + χL(x)(nL − 1)], x ∈ RRR2. (2)

▶ Introduce the ’desired total field’ E tot as the solution of the Helmholtz
problem

(∆ + k(x)2)E tot(x) = 0, x ∈ S ,
E tot(x) = ξ(x), x ∈ C ,

}
(3)

where S is an adequately small open neighborhood of L; the curve C ⊂ S
and the function ξ together define the desired near-field pattern.
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▶ We have

(∆ + k2
0 )E

tot = (k2
0 − k(x)2)E tot = −αχL(x)E

tot, x ∈ S . (4)

▶ Decompose the total field E tot in R2 \ L into the sum E tot = E inc + E sca

of an incident and a scattered field. Assume |E inc| ≪ |E sca| in S \ L.
▶ Since the right-hand member of (4) is compactly supported, and since

the scattered field must satisfy the Sommerfeld radiation condition in the
plane, we have

E sca(x) ≈ E tot(x) = −αΦ0 ∗ (χLE
tot)(x)

= −α
∫
y∈L

Φ0(x − y)E tot(y)dy , x ∈ S \ L, (5)

and thus

E inc(x) ≈ E tot(x) + α

∫
y∈L

Φ0(x − y)E tot(y)dy , x ∈ S \ L. (6)

Here Φ0(x) = (i/4)H
(2)
0 (k0|x |) is the outgoing fundamental solution of

the Helmholtz operator in the plane, and H
(2)
0 is the Hankel function of

order zero and of the second kind.
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Figure: PNJ scanning achieved at the single optical wavelength λ0 = 532 nm (common green laser). A 2D
SiO2 micro-lens with a circular cross-section of radius 4µm, or a square cross-section of side length 8µm, is
illuminated along the negative y -axis by a computed structured incident field. The plots show the amplitude (in
V/m) of the resulting total near field, normalized to maximum intensity of 1. Next to each near-field plot are the
computed amplitude and phase profiles of the incident field that produce the desired total near field. The desired
PNJ locations in µm are, from top to bottom: (x, y) = (0,−4.532), (x, y) = (0,−9.32), (x, y) = (0,−4.532),
(x, y) = (0,−9.32) (radial shifts 1λ0 or 10λ0), and (x, y) = (3.16,−9).

K., Scheel, Pedersen, and Hansen, in review.
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Resolution of field control

Figure: Desired PNJ profiles |E tot
PNJ(θ)| at ∂BRL+ϱ (×105 V/m) for

different lens radii RL. 10 / 44



F (s) ≈
∑
m∈ZZZ
|m|≤B

σm(s, ψm)L2(BRL
)ϕm (7)

s±TSVD =
∑
m∈ZZZ

|m|≤B±

σ−1
m (E tot

PNJ, ϕm)L2(∂BRL
)ψm, (8)

E sca±
s = F (s±TSVD) ≈

∑
m∈ZZZ

|m|≤B±

σm(s
±
TSVD, ψm)L2(BRL

)ϕm

=
∑
m∈ZZZ

|m|≤B±

(E tot
PNJ, ϕm)L2(∂BRL

)ϕm. (9)
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Figure: Resulting physically viable PNJ profiles |E sca
s (θ)| at ∂BRL+ϱ

(×105 V/m) for different lens radii RL.

12 / 44



Figure: Waist-width prediction of PNJ profile for four different lens radii
with a radial shift of 2λ0.
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Figure: Angular PNJ resolution prediction using the projection from (9)
with both bandwidth estimates B± from K. (2018).
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Problem setup

u ∈ S ′(Rn)

Pu = f ∈ E ′(Rn)

e1

R

UC = u|C

C = {e1R cos θ + e2R sin θ, θ ∈ [0, 2π]}

e2

sing supp f C ∩ sing supp f = ∅
C ∩ supp f ̸= ∅ in general

▶ K. & Winterrose (2021). arXiv:1912.10760v2

▶ n ∈ {2, 3, . . . }
▶ f̂ (ξ) =

∫
x∈Rn e

−ix.ξf (x), ξ ∈ Rn; f̂ ∈ C∞(Rn)

▶ ÛC
m :=

∫ 2π

θ=0
e−imθu(e1R cos θ + e2R sin θ)

▶ how does {ÛC
m}m∈Z depend on f̂ ? (relation to old work)
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Comments

▶ no ’radiation condition’; uniqueness of solution of Pu = f not
guaranteed

▶ no singular value expansion of the forward operator

▶ Of all Euclidean spheres, only S0, S1 and S3 admit a
topological group structure. Therefore, it makes sense to
define the Fourier transform of u|Sn−1 only for n = 1, n = 2
and n = 4. For other dimensions n, one may pick specific
bases of, say, L2(Sn−1) and treat the projections of u|Sn−1

onto the basis vectors as ’the Fourier coefficients of the
measurement.’ Instead, we choose to compute the Fourier
coefficients of the measurement in terms of integrals over
great circles for all dimensions n. Our analysis therefore
estimates the magnitude of the spectral content of the
measurement along any chosen direction in Sn−1.
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The symbol p

Fix µ ∈ R, and let p ∈ C∞(Rn) be an elliptic symbol of Hörmander class
Sµ(Rn): for every α ∈ Nn

0 there is a constant Cα s.t.

|∂αp(ξ)| ≤ Cα(1 + |ξ|2)(µ−|α|)/2, ξ ∈ Rn,

and there are positive constants C and R s.t.

|p(ξ)| ≥ C (1 + |ξ|2)µ/2, |ξ| ≥ R.

Assume furthermore that

p(ξ) = g(ξ)
N∏
j=1

(|ξ| − rj)
qj , ξ ∈ Rn,

where N ∈ N, 0 < r1 < r2 < · · · < rN , qj ∈ N, and g ∈ C∞(Rn \ {0})
s.t. |g(ξ)| ≥ Cg > 0; |g(ξ)| ≤ C ′

g <∞ as |ξ| → 0; and |g(ξ)| at most
polynomially increasing as |ξ| → ∞.
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The operator P
With F ,F−1 : S ′(Rn) → S ′(Rn) the (inverse) Fourier transform,
and writing Fu = û, define P : S ′(Rn) → S ′(Rn) by

(Pu)(ϕ) = (F−1pû)(ϕ) = û(pF−1ϕ), u ∈ S ′(Rn), ϕ ∈ S(Rn),

that is, formally,

Pu(x) = (F−1pû)(x) = (2π)−n

∫
ξ∈Rn

e ix .ξp(ξ)û(ξ), x ∈ Rn, u ∈ S ′(Rn).

▶ P = Op(p) ∈ OPSµ(Rn)

▶ P is microlocal: if f = Pu ∈ C∞ in a neighbourhood of
x ∈ Rn then u ∈ C∞ in a neighborhood of x .

▶ since p depends only on ξ, it is a multiplier, and P is a
multiplier operator

▶ P is a Fourier (frequency)-domain filter

▶ a mapping F : Pu 7→ u|C might be expected to essentially
invert the action of P in the Fourier domain
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Admissible operators

▶ P = ∆+ k2, p(ξ) = k2 − |ξ|2 = −(|ξ|+ k)(|ξ| − k),
g(ξ) = −(|ξ|+ k), N = 1, r1 = k, q1 = 1.

▶ differential operators of the form P =
∑M

j=0 cj(−∆)j with
constants cj such that at least one of the zeros of the

polynomial t 7→
∑M

j=0 cj t
2j is positive

▶ pseudodifferential operators whose symbol p(ξ) is independent
of the base variable x and that can be transformed by a
diffeomorphic pullback to a symbol with a radially symmetric
zero set
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The main results
▶ Fix ρ > 0 and let χρ ∈ C∞

0 (Rn) be a window function s.t. χ(ξ) = 1 for |ξ| ≤ ρ
and χ(ξ) = 0 for |ξ| ≥ 2ρ.

▶ Define ûρ = χρû ∈ E ′(Rn); then uϱ is well-defined pointwise, with

uϱ(x) = (−2π)−n̂̂uϱ(−x) = (−2π)−n(ûϱ)ξ(e
ix.ξ), x ∈ Rn.

▶ Let

ÛC
ρ,m =

∫ 2π

θ=0
e−imθuρ(e1R cos θ + e2R sin θ), m ∈ Z. (10)

Lemma 1. (K. & Winterrose) limϱ→∞ ÛC
ϱ,m = ÛC

m for m ∈ Z.

▶ Fix d ∈ N0 and assume u ∈ S′d (Rn), that is, u ∈ S′(Rn) and there is a constant
C satisfying

|u(ϕ)| ≤ C
∑

|α|≤d

sup
x∈Rn

(1 + |x |2)d/2|∂αϕ(x)|, ϕ ∈ S(Rn).

Theorem 1. (K. & Winterrose) If Pu = f and f̂ has moderate growth
then there are constants c ′ and, for any ϱ > 0, cϱ such that∣∣∣ÛC

ϱ,m

∣∣∣ ≤ c ′ + cϱ

N∑
j=1

(
max{1, |m|qj , |m|d}|Jm(Rrj)|

+max{1, |m|qj−1, δKrd≥1|m|d−1}|Jm+1(Rrj)|
)

for m ∈ Z.
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Comments

▶ ”moderate growth”: ∀α ∈ Nn
0 ∃Cα, mα s.t. ∀ξ ∈ Rn

|∂α f̂ (ξ)| ≤ Cα(1 + |ξ|2)mα/2; satisfied by, e.g., point sources

▶ The main information contained in Theorem 1 is the expected upper bound on
the spectral location |m| of the onset of rapid decay of the Fourier coefficients

ÛC
ϱ,m; call this spectral location the ’bandwidth’ of the measurement UC .

▶ Theorem 1 distinguishes between classes of solutions according to their order d
as tempered distributions. The assumption u ∈ S′d (Rn) is a ’weak substitute’
for a condition implying uniqueness. When uniqueness is ensured, d is given by
the problem dimension n and the distributional order of f .

▶ The integral in (10) is the Funk-Radon transform of the integrand, evaluated at
a single chosen direction ν ∈ Sn−1 orthogonal to the plane of C.

21 / 44



Lemma 1

▶ Fix ρ > 0 and let χρ ∈ C∞
0 (Rn) be a window function s.t. χ(ξ) = 1 for |ξ| ≤ ρ

and χ(ξ) = 0 for |ξ| ≥ 2ρ.

▶ Define ûρ = χρû ∈ E ′(Rn); then uϱ is well-defined pointwise, with

uϱ(x) = (−2π)−n̂̂uϱ(−x) = (−2π)−n(ûϱ)ξ(e
ix.ξ), x ∈ Rn.

▶ Let

ÛC
ρ,m =

∫ 2π

θ=0
e−imθuρ(e1R cos θ + e2R sin θ), m ∈ Z.

Lemma 1. (K. & Winterrose) limϱ→∞ ÛC
ϱ,m = ÛC

m for m ∈ Z.

Proof. Since χρ ∈ C∞
0 (Rn) and χρ(0) = 1, we have limϱ→∞ χρϕ = ϕ in

S(Rn) for every ϕ ∈ S(Rn). Hence limϱ→∞ ûϱ = limϱ→∞ χρû = û in
S ′(Rn) with respect to its weak-∗ topology. But F−1 is continuous on
S ′(Rn), so limϱ→∞ uϱ = limϱ→∞ F−1ûϱ = u in S ′(Rn), and since uϱ and
u are smooth in a neighborhood of C, we have limϱ→∞ uϱ(x) = u(x) for
every x ∈ C.
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An overview of the proof of Theorem 1

Assume Pu = f with u ∈ S ′(Rn) and f ∈ E ′(Rn), f̂ of moderate
growth. Since P is elliptic and f ∈ C∞ in a neighborhood of C, the
functions uρ and u are well-defined pointwise on C. We have

ÛC
ρ,m =

∫ 2π

θ=0
e−imθuρ(x(θ)) = (−2π)−n

∫ 2π

θ=0
e−imθ(ûρ)ξ(e

iξ.x(θ))

= (−2π)−n(ûρ)ξ

(∫ 2π

θ=0
e−imθe iξ.x(θ)

)
= (−2π)−nû

(
χρ(ξ)

∫ 2π

θ=0
e−imθe iξ.x(θ)

)
.
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Lemma. (K. & Winterrose)
Define

Tm =

∫ 2π

θ=0
e−imθe ia(X1 cos θ+X2 sin θ),

where a ∈ R \ {0}, m ∈ Z, and where X1 and X2 are arbitrary
complex constants. Writing Jm for the Bessel function of the first
kind and integer order m, we have

Tm =

{
2πimJm(a|X1 + iX2|) exp−im∠(X1 + iX2), X1 + iX2 ̸= 0,

2πδKrm=0, X1 + iX2 = 0.
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Therefore, for any u ∈ S ′(Rn) satisfying Pu = f , we have

ÛC
ρ,m = (−2π)−nû

(
χρ(ξ)

∫ 2π

θ=0
e−imθe iξ.x(θ)

)
= (−1)n(2π)1−nimû

(
χρ(ξ)Jm(R|ξ.e1 + iξ.e2|)e−im∠(e1.ξ+ie2.ξ)

)
.

Remark. It is a standard result that

Jm(Rr) =

√
2

πRr
cos(Rr − (2m + 1)π/4) + O((Rr)−3/2), m ∈ Z,

for Rr ≫ m2. Thus, if χρ were omitted above, the tempered distribution û would
have to work on the function

Jm(R|ξ.e1 + iξ.e2|) exp−im∠(e1.ξ + ie2.ξ),

which is not rapidly decaying. This illustrates the need for the cut-off function χρ and

for analyzing the approximate spectrum ÛC
ϱ,m, ϱ > 0.
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Finding û

Since Pu = f in S′(Rn), we have equivalently pû = f̂ in S′(Rn), where f̂ is of
moderate growth. Also, p ∈ C∞(Rn) and pϕ ∈ S(Rn) for every ϕ ∈ S(Rn), so if we

can find p−1 ∈ S′(Rn) such that pp−1 = 1 in S′(Rn) then one solution of pû = f̂ in

S′(Rn) is û = f̂ p−1. Indeed, in that case

p ·
(
f̂ p−1

)
(ϕ) = (pp−1)(f̂ ϕ) =

∫
Rn

f̂ ϕ = f̂ (ϕ), ϕ ∈ S(Rn).

The corresponding Fourier coefficients at C are, for m ∈ Z,

ÛC
ρ,m = (−1)n(2π)1−nimp−1

(
f̂ (ξ)χρ(ξ)Jm(R|ξ.e1 + iξ.e2|) exp(−im∠(e1.ξ + ie2.ξ))

)
.

Note that p−1 is the Fourier transform of a fundamental solution of P.
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Finding p−1

K. & Winterrose:

p−1(ϕ) =
N∑
j=1

qj∑
k=1

cjk

[
(r − rj )

−k
+,∞ + (−1)k (r − rj )

−k
−,rj

]
⊗ 1Sn−1 (rn−1ϕ/g)

−
N∑
j=1

qj∑
k=n

cjk
(−1)k−n ln rj

(k − n)!
δ
(k−n)
0 ⊗ 1Sn−1 (ϕ/g) (11)

for ϕ ∈ S(Rn).

Also, p−1 ∈ S′max{qj}(Rn).
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The distributions (r − rj)
−k
±,ϱ

Hörmander I, Sec. 3.2: For complex a, define the functions

xa+ =

{
xa, x > 0,

0, x ≤ 0,
and xa− =

{
0, x ≥ 0,

|x |a, x < 0.

If ℜa > −1 then xa+ and xa− define distributions in S′(R).

Extension to all complex a by analytic continuation of the function
C ∋ a 7→

∫∞
x=0 x

aϕ(x), ϕ ∈ C∞
0 (R), and by computing the residues at a = −k, k ∈ N:

x−k
+ (ϕ) = −

1

(k − 1)!

∫ ∞

x=0
(ln x)ϕ(k)(x) +

1

(k − 1)!
ϕ(k−1)(0)

k−1∑
j=1

j−1, ϕ ∈ S(R),

x−k
− (ϕ) = −

(−1)k

(k − 1)!

∫ ∞

x=0
(ln x)ϕ(k)(−x) +

(−1)k−1

(k − 1)!
ϕ(k−1)(0)

k−1∑
j=1

j−1, ϕ ∈ S(R).
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The distributions (r − rj)
−k
±,ϱ

We define the tempered distributions r−k
±,ϱ, k ∈ N, by

r−k
+,ϱ(ϕ) = −

1

(k − 1)!

∫ ϱ

r=0
(ln r)ϕ(k)(r) +

ϕ(k−1)(0)

(k − 1)!

k−1∑
ν=1

1

ν

−
1

(k − 1)!

k−2∑
j=0

ϕ(j)(ϱ)ϱ−k+j+1(k − j − 2)!, ϕ ∈ S(R),

and

r−k
−,ϱ(ϕ) = r−k

+,ϱ(ϕ(−·)) = −
(−1)k

(k − 1)!

∫ ϱ

r=0
(ln r)ϕ(k)(−r) +

(−1)k−1ϕ(k−1)(0)

(k − 1)!

k−1∑
ν=1

1

ν

−
1

(k − 1)!

k−2∑
j=0

(−1)jϕ(j)(−ϱ)ϱ−k+j+1(k − j − 2)!, ϕ ∈ S(R),

respectively. Clearly, the distributions r−k
±,ϱ specialize to Hörmander’s r−k

± when
ϱ = ∞.
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The distributions (r − rj)
−k
±,ϱ

Now for every real b the mapping τb : R → R, τb(r) = r − b, is smooth with surjective

Jacobian τ ′b(r) = 1, so (Hörmander I, Theorem 6.1.2) the pullback of r−k
±,ϱ by τb is

given uniquely by

(r − b)−k
±,ϱ(ϕ) := τ∗b r

−k
±,ϱ(ϕ) = r−k

±,ϱ(ϕ(·+ b)) = r−k
±,ϱ(ϕ ◦ τ−1

b ), ϕ ∈ S(R).

Finally, we write ξ = rω for ξ ∈ Rn, with r ≥ 0 and ω ∈ Sn−1, and let cjk be the
constants from the partial fraction decomposition

N∏
j=1

(r − rj )
−qj =

N∑
j=1

qj∑
k=1

cjk (r − rj )
−k , r ≥ 0, r ̸= rj .
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The trace ÛC
ρ,m

Lemma. (K. & Winterrose)

If u = F−1(f̂ p−1) then, for every positive ϱ and integer m,

(−1)n(2π)n−1i−mÛC
ϱ,m =

N∑
j=1

qj∑
k=1

cjk

[
(r − rj )

−k
+ + (−1)k (r − rj )

−k
−,rj

]
(12)

⊗ 1Sn−1

(
rn−1Ψϱ,m

g

)

−
N∑
j=1

qj∑
k=n

cjk
(−1)k−n ln rj

(k − n)!
δ
(k−n)
0 ⊗ 1Sn−1 (Ψϱ,m/g), (13)

where

Ψϱ,m(rω) = f̂ (rω)χ(rω/ϱ)Jm(Rr |ω.ẽ|)e−im∠(ω.ẽ), r ≥ 0, ω ∈ Sn−1, (14)

and ẽ = e1 + ie2.
Corollary. (K. & Winterrose)

If u = F−1(f̂ p−1) then there is a constant c ′ and, for every positive ϱ, a constant cϱ
such that∣∣∣ÛC

ϱ,m

∣∣∣ ≤ c ′ + cϱ

N∑
j=1

(
max{1, |m|qj }|Jm(Rrj )|+max{1, |m|qj−1}|Jm+1(Rrj )|

)
for m ∈ Z.
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Homogeneous solutions
Lemma. (K. & Winterrose)
If u ∈ S′d (Rn) satisfies Pu = 0 in S′(Rn) then û ∈ E ′d (Rn).

Define Φ : (0,∞)× Sn−1 → Rn \ {0} by Φ(r , ω) = rω.

Lemma. (K. & Winterrose) If u ∈ S′d (Rn) satisfies Pu = 0 in S′(Rn) then there are
uk,j ∈ D′d−k (Sn−1) such that

u(x) =
N∑
j=1

d∑
k=0

(
∂k
r δrj (r)⊗ uk,j (ω)

)(
e irx.ω

)
, x ∈ Cn, (15)

where

d∑
k=qj

(k

qj

)
(−1)kuk,j = 0, j ∈ {1, · · · ,N}. (16)

Theorem. (K. & Winterrose) If u ∈ S′d (Rn) solves Pu = 0 in S′(Rn) then there is
a constant c satisfying

∣∣∣ÛC
m

∣∣∣ ≤ c
N∑
j=1

(
max{1, |m|d}|Jm(rjR)|+ δKrd≥1 max{1, |m|d−1}|Jm+1(rjR)|

)
, m ∈ Z.
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Example 1: the Helmholtz equation in Rn with point source

u ∈ S ′(Rn)

Pu = f ∈ E ′(Rn)

e1

R

UC = u|C

C = {e1R cos θ + e2R sin θ, θ ∈ [0, 2π]}

e2

sing supp f C ∩ sing supp f = ∅
C ∩ supp f ̸= ∅ in general

▶ (∆ + k2)u = ∂ν
j δy in Rn, n ∈ {2, 3, . . . }, j ∈ {1, . . . , n}, ν ∈ N0

▶ Sommerfeld radiation condition, so no nontrivial homogeneous solutions

▶ the unique outgoing fundamental solution:

Φn(x) =

(−2π|x |)(1−n)/2(2ik)−1∂
(n−1)/2
|x| e ik|x|, x ∈ Rn \ {0}, n odd,

(−2π|x |)(2−n)/2(4i)−1∂
(n−2)/2
|x| H

(1)
0 (k|x |), x ∈ Rn \ {0}, n even,

▶ u = (∂ν
j δy ) ∗ Φn = (−1)ν(∂ν

j Φn)(· − y) ∈ S′d (Rn)

▶ we need to estimate the order d of u
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Example 1: the Helmholtz equation in Rn with point source

Lemma. (K. & Winterrose) Φn ∈ S′(n+3)/2(Rn) for n odd. Furthermore,
Φ2 ∈ S′2(R2), Φ4 ∈ S′3(R4) and Φn ∈ S′4(Rn) for n ∈ {6, 8, 10, . . . }.

Remark. Our estimates of the distributional order in S′(Rn) of outgoing fundamental
solutions Φn coincide for n = 1 and n = 2; for n = 3 and n = 4; and for n = 5 and
n = 6, 8, 10, . . . .

Corollary. (K. & Winterrose) (∂ν
j Φn)(· − y) ∈ S′d(n)+ν(Rn), with

d(n) =


(n + 3)/2, n odd,

2, n = 2,

3, n = 4,

4, n ∈ {6, 8, 10, . . . }.
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”Ground truth:”

ÛC
m = (−1)ν

∫ 2π

θ=0
e−imθ∂ν

j Φn(e1R cos θ + e2R sin θ − y), m ∈ Z.

For every ρ > 0 we have

ÛC
ϱ,m = (−1)ν

∫ 2π

θ=0
e−imθ(∂ν

j Φn)ϱ(e1R cos θ + e2R sin θ − y), m ∈ Z,

and, by Theorem 1,

∣∣∣ÛC
ϱ,m

∣∣∣ ≤ c ′ + cϱ ×


(
|m|(n+3+2ν)/2 · |Jm(kR)|+ |m|(n+1+2ν)/2|Jm+1(kR)|

)
, n odd,(

|m|2+ν · |Jm(kR)|+ |m|1+ν · |Jm+1(kR)|
)
, n = 2,(

|m|3+ν · |Jm(kR)|+ |m|2+ν |Jm+1(kR)|
)
, n = 4,(

|m|4+ν · |Jm(kR)|+ |m|3+ν |Jm+1(kR)|
)
, n = 6, 8, 10, . . . ,

where c ′ and cϱ are (unknown) constants.
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dimension n bandwidth predicted actual
by Theorem 1 bandwidth

2 29 29
3 30 30
4 30 29
5 30 29

K. & Winterrose (2021). Comparison of the actual spectrum |ÛC
m| with the bound

from Theorem 1. The spectrum and the bound are shifted and scaled to range in
[−1, 1]. We are interested in the spectral location of the onset of rapid decay of |ÛC

m|.
Parameters: ν = 0, R = 5.01, |y | = 5.
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dimension n bandwidth predicted actual
by Theorem 1 bandwidth

6 30 29
7 30 29
8 30 28
9 30 28

K. & Winterrose (2021). Comparison of the actual spectrum |ÛC
m| with the bound

from Theorem 1. The spectrum and the bound are shifted and scaled to range in
[−1, 1]. We are interested in the spectral location of the onset of rapid decay of |ÛC

m|.
Parameters: ν = 0, R = 5, y = (10, 0, · · · , 0).
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dimension n bandwidth predicted actual
by Theorem 1 bandwidth

2 31 29
3 31 29
4 31 29
5 31 29

K. & Winterrose (2021). Comparison of the actual spectrum |ÛC
m| with the bound

from Theorem 1. The spectrum and the bound are shifted and scaled to range in
[−1, 1]. We are interested in the spectral location of the onset of rapid decay of |ÛC

m|.
Parameters: ν = 5, R = 5, y = (10, 0, · · · , 0).
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”Bad” configurations

▶ |y | ≈ R, ν = 0, n ∈ {6, 7, 8, 9} (a low-order point source in high dimension and
close to the measurement circle C)

▶ |y | ≈ R, ν = 5, n ∈ {2, 3, 4, 5} (a high-order point source in low dimension and
close to the measurement circle C)

▶ consistent with the increasing severity of the singularity of the radiated field
having an adverse effect on the numerical computations
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Example 2: the Helmholtz equation in R2 or R3 with
integrable compactly supported source

u ∈ S ′(Rn)

Pu = f ∈ E ′(Rn)

e1

R

UC = u|C

C = {e1R cos θ + e2R sin θ, θ ∈ [0, 2π]}

e2

sing supp f C ∩ sing supp f = ∅
C ∩ supp f ̸= ∅ in general

▶ (∆ + k2)u = f ∈ E ′(Rn) ∩ Lp(Rn), n ∈ {2, 3}, p ∈ [1,∞]
▶ Sommerfeld radiation condition, so no nontrivial homogeneous solutions
▶ we get immediately that f ∈ Lploc(R

n) ⊆ L1loc(R
n), hence f ∈ E ′0(Rn) ∩ L1(Rn)

▶ For any ϕ ∈ S(Rn) we have f (−·) ∗ ϕ ∈ S(Rn), so

|u(ϕ)| = |(f ∗ Φn)(ϕ)| = |Φn(f (−·) ∗ ϕ)| ≤ C
∑

|α|≤d(n)

⟨x⟩d(n) sup
x∈Rn

|f ∗ ∂αϕ|

≤ C∥f ∥L1(Rn)

∑
|α|≤d(n)

⟨x⟩d(n) sup
x∈Rn

|∂αϕ(x)|,

and consequently u ∈ S′d(n)(Rn). Thus the same spectral cutoff estimates
hold as for the point source case.
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K. & Winterrose (2021). A setup with a compactly supported, piecewise constant

source in R2. Comparison of the actual spectrum |ÛC
m| with the bound from Theorem

1. The spectrum and the bound are shifted and scaled to range in [−1, 1]. We are

interested in the spectral location of the onset of rapid decay of |ÛC
m|. Parameters:

k = 2π, supp f ⊂ {|x | ≤ 5}. Theorem 1 predicts B = 29, actual bandwidth is 27.
Good correspondence with K. (2018), since

{argminm∈N0
{jm,1 ≥ kR}, . . . , argminm∈N0

{ym,1 ≥ kR}} = {26, . . . , 29}

for kR = 2π · 5.01.
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K. & Winterrose (2021). A setup with a compactly supported, piecewise constant

source in R3. Comparison of the actual spectrum |ÛC
m| with the bound from Theorem

1. The spectra and the bound are shifted and scaled to range in [−1, 1]. We are

interested in the spectral location of the onset of rapid decay of |ÛCj
m | for j = 1, 2, 3.

Parameters: k = 2π, R = 1.01, supp f ⊂ {|x | ≤ 1}. Theorem 1 predicts B = 6. The
actual bandwidths are 4, 4 and zero, for measurement over C1, C2 and C3, respectively.
Kirkeby, Henriksen, & K. (2020) predict

{argminm∈N0
{jm+1/2,1 ≥ kR}, . . . , argminm∈N0

{ym+1/2,1 ≥ kR}} = {3, . . . , 5}

for kR = 2π · 1.01. The bandwidths hence appear similar for measurements over the
whole S2 and along single great circles of S2.
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Conclusion

▶ the onset of rapid decay in the measurement spectrum ÛC
m

seems to be uniform over a large class of multiplier equations
Pu = f

▶ this onset depends on the structure of the zero set of the
multiplier symbol, and on the distributional order of the
solution u ∈ S ′d(Rn), but not on other details of the symbol
or, generally, on n

▶ the Bessel functions Jm dictate the non-asymptotic behavior
of the measurement spectrum, and arise from our chosen
geometry of the measurement set C
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